Skip to main content

Advertisement

Log in

Brain endothelial cells and the glio-vascular complex

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

We present and discuss the role of endothelial and astroglial cells in managing the blood-brain barrier (BBB) and aspects of pathological alterations in the BBB. The impact of astrocytes, pericytes, and perivascular cells on the induction and maintenance of the gliovascular unit is largely unidentified so far. An understanding of the signaling pathways that lie between these cell types and the endothelium and that possibly are mediated by components of the basal lamina is just beginning to emerge. The metabolism for the maintenance of the endothelial barrier is intimately linked to and dependent on the microenvironment of the brain parenchyma. We report the structure and function of the endothelial cells of brain capillaries by describing structures involved in the regulation of permeability, including transporter systems, caveolae, and tight junctions. There is increasing evidence that caveolae are not only vehicles for endo- and transcytosis, but also important regulators of tight-junction-based permeability. Tight junctions separate the luminal from the abluminal membrane domains of the endothelial cell (“fence function”) and control the paracellular pathway (“gate function”) thus representing the most significant structure of the BBB. In addition, the extracellular matrix between astrocytes/pericytes and endothelial cells contains numerous molecules with inherent signaling properties that have to be considered if we are to improve our knowledge of the complex and closely regulated BBB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53

    Article  PubMed  CAS  Google Scholar 

  • Agrawal S, Anderson P, Durbeej M, Van Rooijen N, Ivars F, Opdenakker G, Sorokin LM (2006) Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J Exp Med 203:1007–1019

    Article  PubMed  CAS  Google Scholar 

  • Amantea D, Corasanti MT, Mercuri NB, Bernardi G, Bagetta G (2008) Brain regional and cellular localization of gelatinase activity in rat that have undergone transient middle cerebral artery occlusion. Neuroscience 152:8–17

    Article  PubMed  CAS  Google Scholar 

  • Amiry-Moghaddam M, Ottersen OP (2003) The molecular basis of water transport in the brain. Nat Rev Neurosci 4:991–1001

    Article  PubMed  CAS  Google Scholar 

  • Amiry-Moghaddam M, Xue R, Haug FM, Neely JD, Bhardwaj A, Agre P, Adams ME, Froehner SC, Mori S, Ottersen OP (2004) Alpha-syntrophin deletion removes the perivascular but not endothelial pool of aquaporin-4 at the blood-brain barrier and delays the development of brain edema in an experimental model of acute hyponatremia. FASEB J 18:542–544

    PubMed  CAS  Google Scholar 

  • Anderson JM (1996) Cell signalling: MAGUK magic. Curr Biol 6:382–384

    Article  PubMed  CAS  Google Scholar 

  • Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW (1999) Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem 174:23463–23467

    Article  Google Scholar 

  • Badaut J, Regli L (2004) Distribution and possible roles of aquaporin 9 in the brain. Neuroscience 129:971–981

    Article  PubMed  CAS  Google Scholar 

  • Badaut J, Lasbennes F, Magistretti PJ, Regli L (2002) Aquaporins in brain: distribution, physiology and pathophysiology. J Cereb Blood Flow Metab 22:367–378

    Article  PubMed  CAS  Google Scholar 

  • Bader BL, Rayburn H, Crowley D, Hynes RO (1998) Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all αv integrins. Cell 95:507–519

    Article  PubMed  CAS  Google Scholar 

  • Balda MS, Matter K (2000) The tight junction protein ZO-1 and an interacting transcription factor regulate ErbB-2 expression. EMBO J 19:2024–2033

    Article  PubMed  CAS  Google Scholar 

  • Balda MS, Garrett MD, Matter K (2003) The ZO-1-associated Y-box factor ZONAB regulates epithelial cell proliferation and cell density. J Cell Biol 160:423–432

    Article  PubMed  CAS  Google Scholar 

  • Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview. Structure, regulation, and clinical implications. Neurobiol Dis 16:1–13

    Article  PubMed  CAS  Google Scholar 

  • Banerjee S, Bhat MA (2007) Neuron-glial interactions in blood-brain barrier formation. Annu Rev Neurosci 30:235–258

    Article  PubMed  CAS  Google Scholar 

  • Barakat S, Demeule M, Pilorget A, Régina A, Gingras D, Baggetto LG, Béliveau R (2007) Modulation of p-glycoprotein function by caveolin-1 phosporylation. J Neurochem 101:1–8

    Article  PubMed  CAS  Google Scholar 

  • Barber AJ, Lieth E (1997) Agrin accumulates in the brain microvascular basal lamina during development of the blood-brain barrier. Dev Dyn 208:62–74

    Article  PubMed  CAS  Google Scholar 

  • Bauer H, Sonnleitner U, Lametschwandtner A, Steiner M, Adam H, Bauer HC (1995) Ontogenic expression of the erythroid-type glucose transporter (Glut 1) in the telencephalon of the mouse: correlation to the tightening of the blood-brain barrier. Dev Brain Res 86:317–325

    Article  CAS  Google Scholar 

  • Bazzoni G, Dejana E (2004) Endothelial cell-tocell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84:869–901

    Article  PubMed  CAS  Google Scholar 

  • Bechmann I, Galea I, Perry VH (2007) What is the blood-brain barrier (not)? Trends Immunol 28:5–11

    Article  PubMed  CAS  Google Scholar 

  • Begley DJ (2004) ABC transporters and the blood-brain barrier. Curr Pharm Des 10:1295–1312

    Article  PubMed  CAS  Google Scholar 

  • Begley DJ, Brightman MW (2003) Structural and functional aspects of the blood-brain barrier. Prog Drug Res 61:39–78

    PubMed  CAS  Google Scholar 

  • Benfenati V, Nicchia GP, Svelto M, Rapisarda C, Frigeri A, Ferroni S (2007) Functional down-regulation of volume-regulated anion channels in AQP4 knockdown cultured rat cortical astrocytes. J Neurochem 1000:87–104

    Article  CAS  Google Scholar 

  • Berzin TM, Zipser BD, Rafii MS, Kuo-Leblanc V, Yancopoulos GD, Glass DJ, Fallon JR, Stopa EG (2000) Agrin and microvascular damage in Alzheimer’s disease. Neurobiol Aging 21:349–355

    Article  PubMed  CAS  Google Scholar 

  • Bezakova G, Ruegg MA (2003) New insights into the roles of agrin. Nat Rev Mol Cell Biol 4:295–308

    Article  PubMed  CAS  Google Scholar 

  • Blake DJ, Kröger S (2000) The neurobiology of Duchenne muscular dystrophy: learning lessons from muscle? Trends Neurosci 23:92–99

    Article  PubMed  CAS  Google Scholar 

  • Blake DJ, Hawkes R, Benson MA, Beesley PW (1999) Different dystrophin-like complexes are expressed in neurons and glia. J Cell Biol 147:645–657

    Article  PubMed  CAS  Google Scholar 

  • Bolz S, Farrell CL, Dietz K, Wolburg H (1996) Subcellular distribution of glucose transporter (GLUT-1) during development of the blood-brain barrier in rats. Cell Tissue Res 284:355–365

    Article  PubMed  CAS  Google Scholar 

  • Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–677

    Article  PubMed  CAS  Google Scholar 

  • Brillault J, Berezowski V, Cecchelli R, Dehouck MP (2002) Intercommunications between brain capillary endothelial cells and glial cells increase the transcellular permeability of the blood-brain barrier during ischemia. J Neurochem 83:807–817

    Article  PubMed  CAS  Google Scholar 

  • Burggraf D, Trinkl A, Burk J, Martens HK, Dichgans M, Hamann GF (2008) Vascular integrin immunoreactivity is selectively lost on capillaries during rat focal cerebral ischemia and reperfusion. Brain Res 1189:189–197

    Article  PubMed  CAS  Google Scholar 

  • Calogero A, Pavoni E, Gramaglia T, D’Amati G, Ragona G, Brancaccio A, Petrucci TC (2006) Altered expression of α-dystroglycan subunit in human gliomas. Cancer Biol Ther 5:441–448

    Article  PubMed  CAS  Google Scholar 

  • Cattelino A, Liebner S, Zanetti A, Gallini R, Balconi G, Corsi A, Bianco P, Wolburg H, Moore R, Oreda B, Kemler R, Dejana E (2003) The conditional inactivation of β-catenin gene in endothelial cells causes a defective vascular pattern and increased vascular fragility. J Cell Biol 162:1111–1122

    Article  PubMed  CAS  Google Scholar 

  • Citi S, Sabanay H, Kendrick-Jones J, Geiger B (1989) Cingulin: characterization and localization. J Cell Sci 93:107–122

    PubMed  CAS  Google Scholar 

  • Claude P (1978) Morphologic factors influencing transepithelial permeability. A model for the resistance of the zonula occludens. J Membr Biol 39:219–232

    Article  PubMed  CAS  Google Scholar 

  • Connors NC, Kofuji P (2002) Dystrophin Dp71 is critical for the clustered localization of potassium channels in retinal glial cells. J Neurosci 22:4321–4327

    PubMed  CAS  Google Scholar 

  • Connors NC, Adams ME, Froehner SC, Kofuji P (2004) The potassium channel Kir4.1 associates with the dystrophin glycoprotein complex via alpha-syntrophin in glia. J Biol Chem 279:28387–28392

    Article  PubMed  CAS  Google Scholar 

  • Coomber BL, Stewart PA (1985) Morphometric analysis of CNS microvascular endothelium. Microvasc Res 30:99–115

    Article  PubMed  CAS  Google Scholar 

  • Couty J-P, Rampon C, Leveque M, Laran-Chich M-P, Bourdoulous S, Greenwood J, Couraud P-O (2007) PECAM-1 engagement counteracts ICAM-1-induced signaling in brain vascular endothelial cells. J Neurochem 103:793–801

    Article  PubMed  CAS  Google Scholar 

  • De Boer AG, Van der Sandt ICJ, Gaillard PJ (2003) The role of drug transporters at the blood-brain barrier. Annu Rev Pharmacol Toxicol 43:629–656

    Article  PubMed  CAS  Google Scholar 

  • Deeken JF, Löscher W (2007) The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 13:1663–1674

    Article  PubMed  CAS  Google Scholar 

  • Dejana E (2004) Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 5:261–270

    Article  PubMed  CAS  Google Scholar 

  • Dejana E, Corada M, Lampugnani MG (1995) Endothelial cell-to-cell junctions. FASEB J 9:910–918

    PubMed  CAS  Google Scholar 

  • De la Torre JC, Stefano GB (2000) Evidence that Alzheimer’s disease is a microvascular disorder: the role of constitutive nitric oxide. Brain Res Rev 34:119–136

    Article  PubMed  Google Scholar 

  • Del Zoppo GJ, Milner R (2006) Integrin-matrix interactions in the cerebral microvasculature. Arterioscler Thromb Vasc Biol 26:1966–1975

    Article  PubMed  CAS  Google Scholar 

  • Deli MA (2005) The role of blood-brain barrier in neurodegenerative diseases. In: Di Liegro I, Savettieri G (eds) Molecular bases of neurodegeneration. Research Signpost, Trivandrum, India, pp 137–161

    Google Scholar 

  • Demeule M, Jodoin J, Gingras D, Beliveau R (2000) P-glycoprotein is localized in caveolae in resistant cells and in brain capillaries. FEBS Lett 466:219–224

    Article  PubMed  CAS  Google Scholar 

  • Dermietzel R, Spray DC, Nedergaard M (2006) Blood-brain barriers. From ontogeny to artificial interfaces. Wiley-VCH, Weinheim

    Google Scholar 

  • De Vries E, Prat A (2005) The blood-brain barrier and its microenvironment. Basic physiology to neurological disease. Taylor and Francis, New York London

    Google Scholar 

  • Dobrogowska DH, Vorbrodt AW (1999) Quantitative immunocytochemical study of blood-brain barrier glucose transporter (GLUT-1) in four regions of mouse brain. J Histochem Cytochem 47:1021–1029

    PubMed  CAS  Google Scholar 

  • Dolman D, Drndarski S, Abbott NJ, Rattray M (2005) Induction of aquaporin 1 but aquaporin 4 messenger RNA in rat primary brain microvessel endothelial cells in culture. J Neurochem 93:825–833

    Article  PubMed  CAS  Google Scholar 

  • Döring A, Wild M, Vestweber D, Deutsch U, Engelhardt B (2007) E- and P-selectin are not required for the development of experimental autoimmune encephalomyelitis in C57BL/6 and SJL mice. J Immunol 179:8470–8479

    PubMed  Google Scholar 

  • Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H, Kurzchalia TV (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449–2452

    Article  PubMed  CAS  Google Scholar 

  • Durbeej M, Henry MD, Campbell KP (1998) Dystroglycan in development and disease. Curr Biol 10:594–601

    CAS  Google Scholar 

  • Dziegielewska KM, Ek J, Habgood MD, Saunders NR (2001) Development of the choroid plexus. Microsc Res Tech 52:5–20

    Article  PubMed  CAS  Google Scholar 

  • Ebnet K, Vestweber D (1999) Molecular mechanisms that control leukocyte extravasation: the selectins and the chemokines. Histochem Cell Biol 112:1–23

    Article  PubMed  CAS  Google Scholar 

  • Ebnet K, Suzuki A, Ohno S, Vestweber D (2004) Junctional adhesion molecules (JAMs): more molecules with dual functions? J Cell Sci 117:19–29

    Article  PubMed  CAS  Google Scholar 

  • Ehmsen J, Poon E, Davies K (2002) The dystrophin-associated protein complex. J Cell Sci 115:2801–2803

    PubMed  CAS  Google Scholar 

  • Ehrlich P (1885) Das Sauerstoff-Bedürfnis des Organismus. Eine farbenanalytische Studie. PhD thesis. Herschwald, Berlin

  • Engelhardt B (2003) Development of the blood-brain barrier. Cell Tissue Res 314:119–129

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt B, Wolburg H (2004) Transendothelial migration of leukocytes: through the front door or around the side of the house? Eur J Immunol 34:2955–2963

    Article  PubMed  CAS  Google Scholar 

  • Esser S, Wolburg K, Wolburg H, Breier G, Kurzchalia T (1998) Vascular endothelial growth factor induces endothelial fenestrations in vitro. J Cell Biol 140:947–959

    Article  PubMed  CAS  Google Scholar 

  • Farrell CL, Pardridge WM (1991) Blood-brain barrier glucose transporter is asymmetrically distributed on brain capillary endothelial lumenal and ablumenal membranes: an electron microscopic immunogold study. Proc Natl Acad Sci USA 88:5779–5783

    Article  PubMed  CAS  Google Scholar 

  • Folkman J, D’Amore PA (1996) Blood vessel formation: what is its molecular basis? Cell 87:1153–1155

    Article  PubMed  CAS  Google Scholar 

  • Förster C (2008) Tight junctions and the modulation of barrier function in disease. Histochem Cell Biol 130:55–70

    Article  PubMed  CAS  Google Scholar 

  • Förster C, Waschke J, Burek M, Leers J, Drenckhahn D (2006) Glucocorticoid effects on mouse microvascular endothelial barrier permeability are brain specific. J Physiol (Lond) 573:413–425

    Article  CAS  Google Scholar 

  • Förster C, Kahles T, Kietz S, Drenckhahn D (2007) Dexamathasone induces the expression of metalloproteinase inhibitor TIMP-1 in the murine cerebral vascular endothelial cell line cEND. J Physiol (Lond) 580:937–949

    Article  CAS  Google Scholar 

  • Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788

    Article  PubMed  CAS  Google Scholar 

  • Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S (1998) Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions. J Cell Biol 141:1539–1550

    Article  PubMed  CAS  Google Scholar 

  • Furuse M, Sasaki H, Tsukita S (1999) Manner of interaction of heterogenous claudin species within and between tight junction strands. J Cell Biol 147:891–903

    Article  PubMed  CAS  Google Scholar 

  • Gaillard PJ, Visser CC, De Boer AG (2006) Drug delivery to the brain by internalizing receptors at the blood-brain barrier. In: Dermietzel R, Spray DC, Nedergaard M (eds) Blood-brain interfaces: from ontogeny to artificial barriers. Wiley-VCH, Weinheim, pp 501–520

    Google Scholar 

  • Gao B, Saba TM, Tsan M-F (2002) Role of αvβ3-integrin in TNF-α-induced endothelial cell migration. Am J Physiol 283:C1196–C1205

    CAS  Google Scholar 

  • Ge S, Song L, Serwanski DR, Kuziel WA, Pachter JS (2008) Transcellular transport of CCL2 across brain microvascular endothelial cells. J Neurochem 104:1219–1232

    Article  PubMed  CAS  Google Scholar 

  • Gee SH, Montanaro F, Lindenbaum MH, Carbonetto S (1994) Dystroglycan-α: a dystrophin-associated glyoprotein, is a functional agrin receptor. Cell 77:675–686

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt H, Liebner S, Redies C, Wolburg H (1999) N-Cadherin expression in endothelial cells during early angiogenesis in the eye and brain of the chicken: relation to blood-retina and blood-brain barrier development. Eur J Neurosci 11:1191–1201

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt H, Wolburg H, Redies C (2000) N-Cadherin mediates pericytic-endothelial interaction during brain angiogenesis in the chicken. Dev Dyn 218:472–479

    Article  PubMed  CAS  Google Scholar 

  • Ghassemifar R, Lai C-M, Rakoczy PE (2006) VEGF differentially regulates transcription and translation of ZO-1α+ and ZO-1α- and mediates trans-epithelial resistance in cultured endothelial and epithelial cells. Cell Tissue Res 323:117–125

    Article  PubMed  CAS  Google Scholar 

  • Gladson CL (1996) Expression of integrin alpha v beta 3 in small blood vessels of glioblastoma tumors. J Neuropathol Exp Neurol 55:1143–1149

    Article  PubMed  CAS  Google Scholar 

  • Goldmann E (1913) Vitalfärbung am Zentralnervensystem. Beitrag zur Physio-Pathologie des Plexus chorioideus und der Hirnhäute. Abh Königl Preuss Akad Wiss Berlin 1:1–61

    Google Scholar 

  • Goldstein GW, Betz AL (1986) The blood-brain barrier. Sci Am 255:70–79

    Article  Google Scholar 

  • Gonzalez-Mariscal L, Betanzos A, Nava P, Jaramillo BE (2003) Tight junction proteins. Prog Biophys Mol Biol 81:1–44

    Article  PubMed  CAS  Google Scholar 

  • Goodwin AM, Sullivan KM, D’Amore PA (2006) Cultured endothelial cells display endogenous activation of the canonical Wnt signalling pathway and express multiple ligands, receptors, and secreted modulators of Wnt signalling. Dev Dyn 235:3110–3120

    Article  PubMed  CAS  Google Scholar 

  • Guadagno E, Moukhles H (2004) Laminin-induced aggregation of the inwardly rectifying poptassium channel, Kir4.1, and the water-permeable channel, AQP4, via a dystroglycan-containing complex in astrocytes. Glia 47:138–149

    Article  PubMed  Google Scholar 

  • Guo M, Cox B, Mahale S, Davis W, Carranza A, Hayes K, Sprague S, Jimenez D, Ding Y (2008) Pre-ischemic exercise reduces matrix metalloproteinase-9 expression and ameliorates blood-brain barrier dysfunction in stroke. Neuroscience 151:340–351

    Article  PubMed  CAS  Google Scholar 

  • Gurney KJ, Estrada EY, Rosenberg GA (2006) Blood-brain barrier disruption by stromelysin-1 facilitates neutrophil infiltration in neuroinflammation. Neurobiol Dis 23:87–96

    Article  PubMed  CAS  Google Scholar 

  • Haenggi T, Fritschy J-M (2006) Role of dystrophin and utrophin for assembly and function of the dystrophin glycoprotein complex in non-muscle tissue. Cell Mol Life Sci 63:1614–1631

    Article  PubMed  CAS  Google Scholar 

  • Haenggi T, Soontornmalai A, Schaub MC, Fritschy J-M (2004) The role of utrophin and Dp71 for assembly of different dystrophin-associated protein complexes (DPCs) in the choroid plexus and microvasculature of the brain. Neuroscience 129:403–413

    Article  PubMed  CAS  Google Scholar 

  • Hallmann R, Mayer DN, Berg EL, Broermann R, Butcher EC (1995) Novel mouse endothelial cell surface marker is suppressed during differentation of the blood-brain barrier. Dev Dyn 202:325–332

    PubMed  CAS  Google Scholar 

  • Hallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM (2005) Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev 85:979–1000

    Article  PubMed  CAS  Google Scholar 

  • Hamazaki Y, Itoh M, Sasaki H, Furuse M, Tsukita S (2002) Multi-PDZ domain protein 1 (MUPP) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. J Biol Chem 277:455–461

    Article  PubMed  CAS  Google Scholar 

  • Haorah J, Ramirez SH, Schall K, Smith D, Pandya R, Persidsky Y (2007a) Oxidative stress activates protein tyrosine kinase and matrix metalloptroteinases leading to blood-brain barrier dysfunction. J Neurochem 101:566–576

    Article  PubMed  CAS  Google Scholar 

  • Haorah J, Schall K, Ramirez SH, Persidsky Y (2007b) Activation of protein tyrosine kinases and matrix metalloproteinases causes blood-brain barrier injury: novel mechanism for neurodegeneration associated with alcohol abuse. Glia 56:78–88

    Article  Google Scholar 

  • Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185

    Article  PubMed  CAS  Google Scholar 

  • Head BP, Insel PA (2007) Do caveolins regulate cells by actions outside of caveolae? Trends Cell Biol 17:51–57

    Article  PubMed  CAS  Google Scholar 

  • Hellström M, Gerhardt H, Kalén M, Li X, Eriksson U, Wolburg H, Betsholtz C (2001) Lack of pericytes leads to endothelial hyperplasia and abnormal morphogenesis. J Cell Biol 153:543–553

    Article  PubMed  Google Scholar 

  • Hodivala-Dilke KM, Reynolds AR, Reynolds LE (2003) Integrins in angiogenesis: multitalented molecules in a balancing act. Cell Tissue Res 314:131–144

    Article  PubMed  CAS  Google Scholar 

  • Holt KH, Crosbie RH, Venzke DP, Campbell KP (2000) Biosynthesis of dystroglycan: processing of a precursor propeptide. FEBS Lett 468:79–83

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa H, Ninomiya H, Kitamura Y, Fujiwara K, Masaki T (2002) Vascular endothelial cells that express dystroglycan are involved in angiogenesis. J Cell Sci 115:1487–1496

    PubMed  CAS  Google Scholar 

  • Hynes RO (2002) A reevaluation of integrins as regulators of angiogenesis. Nat Med 8:918–921

    Article  PubMed  CAS  Google Scholar 

  • Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5:347–360

    Article  PubMed  CAS  Google Scholar 

  • Inai T, Sengoku A, Hirose E, Iida H, Shibata Y (2008) Comparative characterization of mouse rectum CMT93-I and -II cells by expression of claudin isoforms and tight junction morphology and function. Histochem Cell Biol 129:223–232

    Article  PubMed  CAS  Google Scholar 

  • Itoh M, Nagafuchi A, Yonemura S, Kitaniyasuda T, Tsukita S (1993) The 220 kD protein colocalizing with cadherins in non-epithelial cells is identical to ZO-1, a tight junction associated protein in epithelial cells—cDNA cloning and immunoelectron microscpy. J Cell Biol 121:491–502

    Article  PubMed  CAS  Google Scholar 

  • Jodoin J, Demeule M, Fenart L, Cecchelli R, Farmer S, Linton KJ, Higgins CF, Béliveau R (2003) P-glycoprotein in blood-brain barrier endothelial cells: interaction and oligomerization with caveolins. J Neurochem 87:1010–1023

    Article  PubMed  CAS  Google Scholar 

  • Johansson PA, Dziegielewska KM, Ek CJ, Habgood MD, Møllgard K, Potter A, Schuliga M, Saunders NR (2005) Aquaporin-1 in the choroid plexuses of developing mammalian brain. Cell Tissue Res 322:353–364

    Article  PubMed  CAS  Google Scholar 

  • Jucker M, Tian M, Norton DD, Sherman C, Kusiak JW (1996) Laminin alpha 2 is a component of brain capillary basement membrane: reduced expression in dystrophic dy mice. Neurosci 71:1153–1161

    Article  CAS  Google Scholar 

  • Kaneko K, Yagui K, Tanaka A, Yoshihara K, Ishikawa K, Takahashi K, Bujo H, Sakurai K, Saito Y (2007) Aquaporin 1 is required for hypoxia-inducible angiogenesis in human retinal vascular endothelial cells. Microvasc Res (in press)

  • Kanesaka T, Mori M, Hattori T, Oki T, Kuwabara S (2006) Serum matrix metalloproteinase-3 levels correlate with disease activity in relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatr 77:185–188

    Article  PubMed  CAS  Google Scholar 

  • Kim GW, Lewén A, Copin J-C, Watson BD, Chan PH (2001) The cytosolic antioxidant, copper/zinc superoxide dismutase, attenuates blood-brain barrier disruption and oxidative cellular injury after photothrombotic cortical ischemia in mice. Neuroscience 105:1007–1018

    Article  PubMed  CAS  Google Scholar 

  • Kniesel U, Risau W, Wolburg H (1996) Development of blood-brain barrier tight junctions in the rat cortex. Dev Brain Res 96:229–240

    Article  CAS  Google Scholar 

  • Kofuji P, Ceelen P, Zahs KR, Surbeck LW, Lester HA, Newman EA (2000) Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina. J Neurosci 20:5733–5740

    PubMed  CAS  Google Scholar 

  • Krizbai IA, Bauer H, Bresgen N, Eckl PM, Farkas A, Szatmári E, Traweger A, Wejksza K, Bauer HC (2005) Effect of oxidative stress on the junctional proteins of cultured cerebral endothelial cells. Cell Mol Neurobiol 25:129–139

    Article  PubMed  CAS  Google Scholar 

  • Lagrange P, Romero IA, Minn A, Revest PA (1999) Transendothelial permeability changes induced by free radicals in an in vitro model of the blood-brain barrier. Free Radic Biol Med 27:667–672

    Article  PubMed  CAS  Google Scholar 

  • Labreque L, Royal I, Surprenant DS, Patterson C, Gingras D, Bélivuae R (2003) Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Mol Biol Cell 14:334–347

    Article  CAS  Google Scholar 

  • Lee S-W, Kim W-J, Choi YK, Song HS, Son MJ, Gelman IH, Kim Y-J, Kim K-W (2003) SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat Med 9:900–906

    Article  PubMed  CAS  Google Scholar 

  • Lidov HG, Byers TJ, Kunkel LM (1993) The distribution of dystrophin in the murine central nervous system: an immunocytochemical study. Neuroscience 54:167–187

    Article  PubMed  CAS  Google Scholar 

  • Liebner S, Engelhardt B (2005) Development of the blood-brain barrier. In: De Vries E, Prat A (eds) The blood brain barrier and its microenvironment. Basic physiology to neurological disease. Taylor and Francis, New York London, pp 1–25

    Google Scholar 

  • Liebner S, Fischmann A, Rascher G, Duffner F, Grote E-H, Kalbacher H, Wolburg H (2000a) Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol 100:323–331

    Article  PubMed  CAS  Google Scholar 

  • Liebner S, Gerhardt H, Wolburg H (2000b) Differential expression of endothelial β-catenin and plakoglobin during development and maturation of the blood-brain and the blood-retina barrier in the chicken. Dev Dyn 217:86–98

    Article  PubMed  CAS  Google Scholar 

  • Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Radice GL (2005) N-cadherin acts upstream of VE-cadherin in controlling vascular morphogenesis. J Cell Biol 169:29–34

    Article  PubMed  CAS  Google Scholar 

  • Maher F, Vannucci SJ, Simpson IA (1994) Glucose transporter proteins in brain. FASEB J 8:1003–1011

    PubMed  CAS  Google Scholar 

  • Mandel LJ, Bacallao R, Zampighi G (1993) Uncoupling of the molecular “fence” and paracellular “gate” functions in epithelial tight junctions. Nature 361:552–555

    Article  PubMed  CAS  Google Scholar 

  • Mann GE, Yudilevich DL, Sobrevia L (2003) Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. Physiol Rev 83:183–252

    PubMed  CAS  Google Scholar 

  • Maretto S, Cordenonsi M, Dupont S, Braghetta P, Broccoli V, Hassan AB, Volpin D, Bressan GM, Piccolo S (2003) Mapping Wnt/β-catenin signaling during mouse development and in colorectal tumors. Proc Natl Acad Sci USA 100:3299–3304

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Estrada OM, Rodriguez-Millán E, González-de Vicente E, Reina M, Vilaró S, Fabre M (2003) Erythropoietin protects the in vitro blood-brain barrier against VEGF-induced permeability. Eur J Neurosci 18:2538–2544

    Article  PubMed  Google Scholar 

  • Martinez-Palomo A, Meza I, Beaty G, Cereijido M (1980) Experimental modulation of occluding junctions in a cultured transporting epithelium. J Cell Biol 87:736–745

    Article  PubMed  CAS  Google Scholar 

  • Masckauchán TNH, Agalliu D, Vorontchikhina M, Ahn A, Parmalee NL, Li C-M, Khoo A, Tycko B, Brown AMC, Kitajewski J (2006) Wnt5a signalling induces proliferation and survival of endothelial cells in vitro and expression of MMP-1 and Tie-2. Mol Biol Cell 17:5163–5172

    Article  PubMed  CAS  Google Scholar 

  • Matter K, Balda MS (2003) Signalling to and from tight junctions. Nat Rev Mol Biol 4:225–236

    Article  CAS  Google Scholar 

  • Mayhan WG (2000) Cellular mechanisms by which tumor necrosis factor-alpha produces disruption of the blood-brain barrier. Brain Res 866:101–108

    Article  PubMed  CAS  Google Scholar 

  • McCarty JH, Monahan-Earley RA, Brown LF, Keller M, Gerhardt H, Rubin K, Shani M, Dvorak HF, Wolburg H, Bader BL, Dvorak AM, Hynes RO (2002) Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking αv integrins. Mol Cell Biol 22:7667–7677

    Article  PubMed  CAS  Google Scholar 

  • McCaffrey G, Staatz WD, Quigley CA, Nametz N, Seelbach MJ, Campos CR, Brooks TA, Egleton RD, Davis TP (2007) Tight junctions contain oligomeric protein assembly critical for maintaining blood-brain barrier integrity in vivo. J Neurochem 103:2540–2555

    Article  CAS  Google Scholar 

  • Michel T (1999) Targeting and translocation of endothelial nitric oxide synthase. Braz J Med Biol Res 32:1361–1366

    Article  PubMed  CAS  Google Scholar 

  • Miyamori H, Takino T, Kobayashi Y, Tokai H, Itoh Y, Seiki M, Sato H (2001) Claudin promotes activation of pro-matrix metalloproteinase-2 mediated by membrane-type matrix metalloproteinases. J Biol Chem 276:28204–28211

    Article  PubMed  CAS  Google Scholar 

  • Møllgard K, Malinowska DH, Saunders NR (1980) Lack of correlation between tight junction morphology and permeability properties in the choroid plexus. Nature 264:293–294

    Article  Google Scholar 

  • Moore SA, Saito F, Chen J, Michele DE, Henry MD, Messing A, Cohn RD, Ross-Barta SE, Westra S, Williamson RA, Hoshi T, Campbell KP (2002) Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy. Nature 418:422–425

    Article  PubMed  CAS  Google Scholar 

  • Morgan L, Shah B, Rivers LE, Barden L, Groom AJ, Chung R, Higazi D, Desmond H, Smith T, Staddon JM (2007) Inflammation and dephosphorylation of the tight junction protein occludin in an experimental model of multiple sclerosis. Neuroscience 147:664–673

    Article  PubMed  CAS  Google Scholar 

  • Morita K, Furuse M, Fujimoto K, Tsukita S (1999a) Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci USA 96:511–516

    Article  PubMed  CAS  Google Scholar 

  • Morita K, Sasaki H, Furuse M, Tsukita S (1999b) Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 147:185–194

    Article  PubMed  CAS  Google Scholar 

  • Mulligan SJ, MacVicar BA (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431:195–199

    Article  PubMed  CAS  Google Scholar 

  • Nabi IR, Le PU (2003) Caveolae/raft-dependent endocytosis. J Cell Biol 161:673–677

    Article  PubMed  CAS  Google Scholar 

  • Nag S (2003) The blood-brain barrier. Biology and research protocols. Humana, Totowa

    Google Scholar 

  • Nag S, Picard P, Stewart DJ (2001) Expression of nitric oxide synthases and nitrotyrosine during blood-brain barrier breakdown and repair after cold injury. Lab Invest 81:41–49

    PubMed  CAS  Google Scholar 

  • Nag S, Venugopalan R, Stewart DJ (2007) Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood-brain barrier breakdown. Acta Neuropathol 114:459–469

    Article  PubMed  CAS  Google Scholar 

  • Nagelhus EA, Mathisen TM, Ottersen OP (2004) Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with Kir4.1. Neuroscience 129:905–913

    Article  PubMed  CAS  Google Scholar 

  • Nagy Z, Peters H, Hüttner I (1984) Fracture faces of cell junctions in cerebral endothelium during normal and hyperosmotic conditions. Lab Invest 50:313–322

    PubMed  CAS  Google Scholar 

  • Nase G, Helm PJ, Enger R, Ottersen OP (2008) Water entry into astrocytes during brain edema formation. Glia 56:895–902

    Article  PubMed  Google Scholar 

  • Neely JD, Amiry-Moghaddam M, Ottersen OP, Froehner SC, Agre P, Adams ME (2001) Syntrophin-dependent expression and localization of aquaporin-4 water channel protein. Proc Natl Acad Sci USA 98:14108–14113

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus J (1990) Orthogonal arrays of particles in astroglial cells: quantitative analysis of their density, size, and correlation with intramembranous particles. Glia 3:241–251

    Article  PubMed  CAS  Google Scholar 

  • Nicchia GP, Frigeri A, Liuzzi GM, Santocroce MP, Nico B, Procino G, Quondamatteo F, Herklen R, Roncali L, Svelto M (2000) Aquaporin-4-containing astrocytes sustain a temperature- and mercury-insensitive swelling in vitro. Glia 31:29–38

    Article  PubMed  CAS  Google Scholar 

  • Nicchia GP, Nico B, Camassa LMA, Mola MG, Loh N, Dermietzel R, Spray DC, Svelto M, Frigeri A (2004) The role of aquaporin-4 in the blood-brain barrier development and integrity: studies in animal and cell culture models. Neuroscience 129:935–945

    Article  PubMed  CAS  Google Scholar 

  • Nicchia GP, Cogotzi L, Rossi A, Basco D, Brancaccio A, Svelto M, Frigeri A (2008) Expression of multiple AQP4 pools in the plasma membrane and their association with the dystrophin complex. J Neurochem (in press)

  • Nico B, Frigeri A, Nicchia GP, Quondamatteo F, Herken R, Errede M, Ribatti D, Svelto M, Roncali L (2001) Role of aquaporin-4 water channel in the development and integrity of the blood-brain barrier. J Cell Sci 114:1297–1307

    PubMed  CAS  Google Scholar 

  • Nico B, Nicchia GP, Frigeri A, Corsi P, Mangieri D, Ribatti D, Svelto M, Roncali L (2004) Altered blood-brain barrier development in dystrophic mdx mice. Neuroscience 125:921–935

    Article  PubMed  CAS  Google Scholar 

  • Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171–180

    PubMed  CAS  Google Scholar 

  • Nitkin RM, Smith MA, Magill C, Fallon JR, Yao Y-MM, Wallace BG, McMahan UJ (1987) Identification of agrin, a synaptic organizing protein from Torpedo electric organ. J Cell Biol 105:2471–2478

    Article  PubMed  CAS  Google Scholar 

  • Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161:653–660

    Article  PubMed  CAS  Google Scholar 

  • Noell S, Fallier-Becker P, Beyer C, Kröger S, Mack AF, Wolburg H (2007) Effects of agrin on the expression and distribution of the water channel protein aquaporin-4 and volume regulation in cultured astrocytes. Eur J Neurosci 26:2109–2118

    Article  PubMed  Google Scholar 

  • Nusrat A, Parkos CA, Verkade P, Foley CS, Liang TW, Innis-Whitehouse W, Eastburn WK, Madara JL (2000) Tight junctions are membrane microdomains. J Cell Sci 113:1771–1781

    PubMed  CAS  Google Scholar 

  • Ohnishi H, Nakahara T, Furuse K, Sasaki H, Tsukita S, Furuse M (2004) JACOP, a novel plaque protein localizing at the apical junctional complex with sequence similarity to cingulin. J Biol Chem 279:46014–46022

    Article  PubMed  CAS  Google Scholar 

  • Omidi Y, Barar J, Ahmadian S, Heidari HR, Gumbleton M (2008) Characterization and astrocytic modulation of system L transporters in brain microvasculature endothelial cells. Cell Biochem Funct 26:381–391

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos MC, Krishna S, Verkman AS (2002) Aquaporin water channels and brain edema. Mount Sinai J Med 69:242–248

    Google Scholar 

  • Parton RG, Richards AA (2003) Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic 4:724–738

    Article  PubMed  CAS  Google Scholar 

  • Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194

    Article  PubMed  CAS  Google Scholar 

  • Parton RG, Joggerst B, Simons K (1994) Regulated internalization of caveolae. J Cell Biol 127:1199–1215

    Article  PubMed  CAS  Google Scholar 

  • Pawson T, Nash P (2003) Assembly of cell regulatory systems through protein interaction domains. Science 300:445–452

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Palay SL, Webster H (1991) The fine structure of the nervous system. Oxford University Press, New York

    Google Scholar 

  • Piontek J, Winkler L, Wolburg H, Müller SL, Zuleger N, Piehl C, Wiesner B, Krause G, Blasig IE (2008) Formation of tight junction: determinants of homophilic interaction between classic claudins. FASEB J 22:146–158

    Article  PubMed  CAS  Google Scholar 

  • Qutub AA, Hunt CA (2005) Glucose transport to the brain: a systems model. Brain Res Rev 49:595–617

    Article  PubMed  CAS  Google Scholar 

  • Rajasekaran AK, Hojo M, Huima T, Rodriguez-Boulan E (1996) Catenins and zonula occludens-1 form a complex during early stages in the assembly of tight junctions. J Cell Biol 132:451–464

    Article  PubMed  CAS  Google Scholar 

  • Ramsauer M (2006) Pericytes and their contribution to the blood-brain barrier. In: Dermietzel R, Spray DC, Nedergaard M (eds) Blood-brain interfaces: from ontogeny to artificial barriers. Wiley-VCH, Weinheim, pp 109–127

    Google Scholar 

  • Ransohoff RM, Kivisääk P, Kidd G (2003) Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 3:569–581

    Article  PubMed  CAS  Google Scholar 

  • Rascher G, Fischmann A, Kröger S, Duffner F, Grote E-H, Wolburg H (2002) Extracellular matrix and the blood-brain barrier in glioblastoma multiforme: spatial segregation of tenascin and agrin. Acta Neuropathol 104:85–91

    Article  PubMed  CAS  Google Scholar 

  • Rascher-Eggstein G, Liebner S, Wolburg H (2004) The blood-brain barrier in the human glioma. In: Sharma HS, Westman J (eds) Blood-spinal cord and brain barriers in health and desease, vol 1. Academic Press, San Diego, pp 561-576

    Chapter  Google Scholar 

  • Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S (1998) Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci USA 95:11981–11986

    Article  PubMed  CAS  Google Scholar 

  • Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34:207–217

    Article  PubMed  CAS  Google Scholar 

  • Reichel A (2006) The role of blood-brain barrier studies in the pharmaceutical industry. Curr Drug Metab 7:183–203

    Article  PubMed  CAS  Google Scholar 

  • Risau W, Hallmann R, Albrecht U (1986) Differentiation-dependent expression of protein in brain endothelium during development of the blood-brain barrier. Dev Biol 117:537–545

    Article  PubMed  CAS  Google Scholar 

  • Roberts WG, Palade GE (1995) Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. Cancer Res 57:765–772

    Google Scholar 

  • Rosenberg GA (2005) Matrix metalloproteinases and proteolytic opening of the blood-brain barrier in neuroinflammation. In: De Vries E, Prat A (eds) The blood-brain barrier and its microenvironment. Basic physiology to neurological disease. Taylor and Francis, New York London, pp 335–358

    Google Scholar 

  • Rosenberg GA, Yang Y (2007) Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg Focus 22:E4

    Article  PubMed  Google Scholar 

  • Rosenberg GA, Navratil M, Barone F, Feuerstein G (1996) Proteolytic cascade enzyme increase in focal cerebral ischemia in rat. J Cereb Blood Flow Metab 16:360–366

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Ederra J, Zhang H, Verkman AS (2007) Evidence against functional interaction between aquaporin-4 water channels and Kir4.1 potassium channels in retinal Müller cells. J Biol Chem 282:21866–21872

    Article  PubMed  CAS  Google Scholar 

  • Qin Y, Sato TN (1995) Mouse multidrug resistance 1a/3 gene is the earliest known endothelial cell differentiation marker during blood-brain barrier development. Dev Dyn 202:172–180

    PubMed  CAS  Google Scholar 

  • Saadoun S, Papadopoulos MC, Davies DC, Krishna S, Bell BA (2002) Aquaporin-4 expression is increased in oedematous human brain tumours. J Neurol Neurosurg Psychiatry 72:262–265

    Article  PubMed  CAS  Google Scholar 

  • Saitou M, Furuse M, Sasaki H, Schulzke J-D, Fromm M, Takano H, Noda T, Tsukita S (2000) Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11:4131–4142

    PubMed  CAS  Google Scholar 

  • Sakakibara A, Furuse M, Saitou M, Ando-Akatsuka Y, Tsukita S (1997) Possible involvement of phosphorylation of occludin in tight junction formation. J Cell Biol 137:1393–1401

    Article  PubMed  CAS  Google Scholar 

  • Sameshima T, Nabeshima K, Toole BP, Yokogami K, Okada Y, Goya T, Koono M, Wakisaka S (2000) Glioma cell extracellular matrix metalloproteinase inducer (EMMPRIN) (CD147) stimulates production of membrane-type matrix metalloproteinases and activated gelatinase A in co-cultures with brain-derived fibroblasts. Cancer Lett 157:177–184

    Article  PubMed  CAS  Google Scholar 

  • Saunders NR, Knott GW, Dziegielewska KM (2000) Barriers in the immature brain. Cell Mol Neurobiol 20:29–40

    Article  PubMed  CAS  Google Scholar 

  • Schinkel AH, Smit JJM, Tellingen O van, Beijnen JH, Wagenaar E, Deemter L van, Mol CAAM, Walk MA van der, Robanus-Maandag EC, Riele HPJ te, Berns AJM, Borst P (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491–502

    Article  PubMed  CAS  Google Scholar 

  • Schlosshauer B, Herzog K-H (1990) Neurothelin: an inducible cell surface glycoprotein of blood-brain barrier-specific endothelial cells and distinct neurons. J Cell Biol 110:1261–1274

    Article  PubMed  CAS  Google Scholar 

  • Schreibelt G, Kooij G, Reijerkerk A, Van Doorn R, Gringhuis SI, Van der Pol S, Weksler BB, Romero IA, Couraud P-O, Piontek J, Blasig IE, Dijkstra CD, Ronken E, De Vries HE (2007a) Reactive oxygen species alter endothelial tight junction dynamics via rhoA, PI3 kinase, and PKB signalling. FASEB J 21:3666–3676

    Article  PubMed  CAS  Google Scholar 

  • Schreibelt G, Van Horssen J, Van Rossum S, Dijkstra CD, Drukarch B, De Vries HE (2007b) Therapeutic potential and biological role of endogenous antioxidant enzymes in multiple sclerosis pathology. Brain Res Rev 56:322–330

    Article  PubMed  CAS  Google Scholar 

  • Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–985

    Article  PubMed  CAS  Google Scholar 

  • Seulberger H, Unger CM, Risau W (1992) HT7, Neurothelin, Basigin, gp42 and OX-47—many names for one developmentally regulated immuno-globulin-like surface glycoprotein on blood-brain barrier endothelium, epithelial tissue barriers and neurons. Neurosci Lett 140:93–97

    Article  PubMed  CAS  Google Scholar 

  • Simard M, Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129:877–896

    Article  PubMed  CAS  Google Scholar 

  • Simionescu M, Gafencu A, Antohe F (2002) Transcytosis of plasma macromolecules in endothelial cells: a cell biological survey. Microsc Res Tech 57:269–288

    Article  PubMed  CAS  Google Scholar 

  • Simpson IA, Vannucci SJ, DeJoseph MR, Hawkins RA (2001) Glucose transporters asymmetries in the bovine blood-brain barrier. J Biol Chem 276:12725–12729

    Article  PubMed  CAS  Google Scholar 

  • Sixt M, Engelhardt B, Pausch F, Hallmann R, Wendler O, Sorokin LM (2001) Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood-brain barrier in experimental autoimmune encephalomyelitis. J Cell Biol 153:933–946

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Hilgenberg LGW (2002) Agrin in the CNS: a protein in search of a function? NeuroReport 13:1485–1495

    Article  PubMed  CAS  Google Scholar 

  • Smith MW, Gumbleton M (2006) Endocytosis at the blood-brain barrier: from basic understanding to drug delivery strategies. J Drug Targeting 14:191–214

    Article  CAS  Google Scholar 

  • Solé S, Petegnief V, Gorina R, Chamorro Á, Planas AM (2004) Activation of matrix metalloproteinase-3 and agrin cleavage in cerebral ischemia/reperfusion. J Neuropathol Exp Neurol 63:338–349

    PubMed  Google Scholar 

  • Song L, Pachter JS (2004) Monocyte chemoattractant protein-1 alters expression of tight junction-associated proteins in brain microvascular endothelial cells. Microvasc Res 67:78–89

    Article  PubMed  CAS  Google Scholar 

  • Song L, Ge S, Pachter JS (2007) Caveolin-1 regulates expression of junction-associated proteins in brain microvascular endothelial cells. Blood 109:1515–1523

    Article  PubMed  CAS  Google Scholar 

  • Sorokin L, Girg W, Gopfert T, Hallmann R, Deutzmann R (1994) Expression of novel 400-kDa laminin chains by mouse and bovine endothelial cells. Eur J Biochem 223:603–610

    Article  PubMed  CAS  Google Scholar 

  • Speake T, Freeman LJ, Brown PD (2003) Expression of aquaporin 1 and aquaporin 4 water channels in rat choroid plexus. Biochim Biophys Acta 1609:80–86

    Article  PubMed  CAS  Google Scholar 

  • Staehelin LA (1974) Structure and function of intercellular junctions. Int Rev Cytol 39:191–283

    Article  PubMed  CAS  Google Scholar 

  • Stan R-V (2002) Structure and function of endothelial caveolae. Microsc Res Tech 57:350–364

    Article  PubMed  Google Scholar 

  • Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA (1986) Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol 103:755–766

    Article  PubMed  CAS  Google Scholar 

  • Stewart PA, Wiley MJ (1981) Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail-chick transplantation chimeras. Dev Biol 84:183–192

    Article  PubMed  CAS  Google Scholar 

  • Stone DM, Nikolics K (1995) Tissue- and age-specific expression patterns of alternatively spliced agrin mRNA transcripts in embryonic rat suggest novel developmental roles. J Neurosci 15:6767–6778

    PubMed  CAS  Google Scholar 

  • Suzuki A, Yamanaka T, Hirose T, Manabe N, Mizuno K, Shimizu M, Akimoto K, Izumi T, Ohnishi T, Ohno S (2001) Atypical protein kinase C is involved in the evolutionarily conserved PAR protein complex and plays a critical role in establishing epithelia-specific junctional structures. J Cell Biol 152:1183–1196

    Article  PubMed  CAS  Google Scholar 

  • Takano T, Tian G-F, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9:260–267

    Article  PubMed  CAS  Google Scholar 

  • Takeichi M (2007) The cadherin superfamily in neuronal connections and interactions. Nat Rev Neurosci 8:11–20

    Article  PubMed  CAS  Google Scholar 

  • Tian M, Jacobsen C, Gee SH, Campbell KP, Carbonetto S, Jucker M (1996) Dystroglycan in the cerebellum is a laminin α2 chain binding protein at the glial-vascular interface and is expressed in Purkinje cells. Eur J Neurosci 8:2739–2747

    Article  PubMed  CAS  Google Scholar 

  • Traweger A, Fuchs R, Krizbai IA, Weiger TM, Bauer HC, Bauer H (2002) The tight junction specific protein occludin is a functional target of the E3 ubiquitin-protein ligase Itch. J Biol Chem 277:10201–10208

    Article  PubMed  CAS  Google Scholar 

  • Traweger A, Lehner C, Farkas A, Krizbai IA, Tempfer H, Klement E, Guenther B, Bauer H-C, Bauer H (2008) Nuclear zonula occludens-2 alters gene expression and junctional stability in epithelial and endothelial cells. Differentiation 76:99–106

    PubMed  CAS  Google Scholar 

  • Tsukita S, Furuse M (1999) Occludin and claudins in tight-junction strands: leading or supporting players? Trends Cell Biol 9:268–273

    Article  PubMed  CAS  Google Scholar 

  • Tsukita S, Furuse M (2000) Pores in the wall: claudins constitute tight junction strands containing aqueous pores. J Cell Biol 149:13–16

    Article  PubMed  CAS  Google Scholar 

  • Tsukita S, Furuse M, Itoh M (1999) Structural and signalling molecules come together at tight junctions. Curr Opin Cell Biol 11:628–633

    Article  PubMed  CAS  Google Scholar 

  • Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2:285–293

    Article  PubMed  CAS  Google Scholar 

  • Tuma PL, Hubbard AL (2003) Transcytosis: crossing cellular barriers. Physiol Rev 83:871–932

    PubMed  CAS  Google Scholar 

  • Turcotte S, Demeule M, Régina A, Fournier C, Jodoin J, Moghrabi A, Béliveau R (2006) The blood-brain barrier: roles of multidrug resistance transporter P-glycoprotein. In: Dermietzel R, Spray DC, Nedergaard M (eds) Blood-brain interfaces: from ontogeny to artificial barriers. Wiley-VCH, Weinheim, pp 431–462

    Google Scholar 

  • Ueda H, Baba T, Kashiwagi K, Iijima H, Ohno S (2000a) Dystrobrevin localization in photoreceptor axon terminals and at blood-ocular barrier sites. Invest Ophthalmol Vis Sci 41:3908–3914

    PubMed  CAS  Google Scholar 

  • Ueda H, Baba T, Terada N, Kato Y, Fuji Y, Takayama I, Mei X, Ohno S (2000b) Immunolocalization of dystrobrevin in the astrocytic endfeet and endothelial cells in the rat cerebellum. Neurosci Letters 283:121–124

    Article  CAS  Google Scholar 

  • Usatyuk PV, Parinandi NL, Natarajan V (2006) Redox regulation of 4-hydroxy-2-nonenal-mediated endothelial barrier dysfunction by focal adhesion, adherens, and tight junction proteins. J Biol Chem 281:35554–35566

    Article  PubMed  CAS  Google Scholar 

  • VanSaun M, Werle MJ (2000) Matrix metalloproteinase-3 removes agrin from synaptic basal lamina. J Neurobiol 43:140–149

    Article  PubMed  CAS  Google Scholar 

  • Verbavatz J-M, Ma T, Gobin R, Verkman AS (1997) Absence of orthogonal arrays in kidney, brain and muscle from transgenic knockout mice lacking water channel aquaporin-4. J Cell Sci 110:2855–2860

    PubMed  CAS  Google Scholar 

  • Virgintino D, Robertson D, Errede M, Benagiano V, Girolamo F, Maiorano E, Roncali L, Bertossi M (2002a) Expression of P-glycoprotein in human cerebral cortex microvessels. J Histochem Cytochem 50:1671–1676

    PubMed  CAS  Google Scholar 

  • Virgintino D, Robertson D, Errede M, Benagiono V, Tauer U, Roncali L, Bertossi M (2002b) Expression of caveolin-1 in human brain microvessels. Neuroscience 115:145–152

    Article  PubMed  CAS  Google Scholar 

  • Virgintino D, Girolamo F, Errede M, Capobianco C, Robertson D, Stallcup WB, Perris R, Roncali L (2007) An intimate interplay between precocious, migrating pericytes and endothelial cells governs human fetal brain angiogenesis. Angiogenesis 10:35–45

    Article  PubMed  Google Scholar 

  • Virgintino D, Errede M, Girolamo F, Capobianco C, Robertson D, Vimercati A, Serio G, Di Benedetto A, Yonekawa Y, Frei K, Roncali L (2008) Fetal blood-brain barrier P-glycoprotein contributes to brain protection during human development. J Neuropathol Exp Neurol 67:50–61

    Article  PubMed  CAS  Google Scholar 

  • Wakai S, Hirokawa N (1978) Development of the blood-brain barrier to horseradish peroxidase in the chick embryo. Cell Tissue Res 195:195–203

    Article  PubMed  CAS  Google Scholar 

  • Warth A, Kröger S, Wolburg H (2004) Redistribution of aquaporin-4 in human glioblastoma correlates with loss of agrin immunoreactivity from brain capillary basal laminae. Acta Neuropathol 107:311–318

    Article  PubMed  CAS  Google Scholar 

  • Warth A, Mittelbronn M, Wolburg H (2005) Redistribution of the water channel protein aquaporin-4 and the K+ channel protein Kir4.1 differs in low- and high-grade human brain tumors. Acta Neuropathol 109:418–426

    Article  PubMed  CAS  Google Scholar 

  • Warth A, Mittelbronn M, Hülper P, Erdlenbruch B, Wolburg H (2007) Expression of the water channel protein aquaporin-9 in malignant brain tumors. Appl Immunohistochem Mol Morphol 15:193–198

    Article  PubMed  CAS  Google Scholar 

  • Weber C, Fraemohs L, Dejana E (2007) The role of junctional adhesion molecules in vascular inflammation. Nat Rev Immunol 7:467–477

    Article  PubMed  CAS  Google Scholar 

  • Winder SJ (2001) The complexities of dystroglycan. Trends Biochem Sci 26:118–124

    Article  PubMed  CAS  Google Scholar 

  • Wolburg H (1995) Orthogonal arrays of intramembranous particles. A review with special reference to astrocytes. J Brain Res 36:239–258

    CAS  Google Scholar 

  • Wolburg H, Lippoldt A (2002) Tight junctions of the blood-brain barier: development, composition and regulation. Vasc Pharmacol 38:323–337

    Article  CAS  Google Scholar 

  • Wolburg H, Neuhaus J, Kniesel U, Krauss B, Schmid E-M, Öcalan M, Farrell C, Risau W (1994) Modulation of tight junction structure in blood-brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. J Cell Sci 107:1347–1357

    PubMed  CAS  Google Scholar 

  • Wolburg H, Liebner S, Reichenbach A, Gerhardt H (1999) The pecten oculi of the chicken: a model system for vascular differentiation and barrier maturation. Int Rev Cytol 187:111–159

    Article  PubMed  CAS  Google Scholar 

  • Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote E-H, Risau W, Engelhardt B (2003) Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol 105:586–592

    PubMed  CAS  Google Scholar 

  • Wolburg H, Lippoldt A, Ebnet K (2006) Tight junctions and the blood-brain barrier. In: Gonzales-Mariscal L (ed) Tight junctions. Landes Bioscience/Springer Science, Georgetown New York, pp 175–195

    Chapter  Google Scholar 

  • Wolburg H, Wolburg-Buchholz K, Sam H, Horvát S, Deli MA, Mack AF (2008) Epithelial and endothelial barriers in the olfactory region of the nasal cavity of the rat. Histochem Cell Biol 130:127–140

    Article  PubMed  CAS  Google Scholar 

  • Woodfin A, Voisin M-B, Nourshargh S (2007) PECAM-1: a multi-functional molecule in inflammation and vascular biology. Arterioscler Thromb Vasc Biol 27:2514–2523

    Article  PubMed  CAS  Google Scholar 

  • Wu B, Crampton SP, Hughes CCW (2007) Wnt signaling induces MMP expression and regulates T cell transmigration. Immunity 26:227–239

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Helftenbein G, Koslowski M, Sahin U, Tureci Ö (2006) Identification of new claudin family members by a novel PSI-BLAST based approach with enhanced specificity. Proteins 65:808–815

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Brown D, Verkman AS (1996) The mercurial insensitive water channel (AQP-4) forms orthogonal arrays in stably transfected chinese hamster ovary cells. J Biol Chem 271:4577–4580

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA (2007) Matrix metalloproteinase-mediated disruption of tight junction propteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 27:698–709

    Article  CAS  Google Scholar 

  • Zaccaria ML, Di Tommaso F, Brancaccio A, Paggi P, Petrucci TC (2001) Dystroglycan distribution in adult mouse brain: a light and electron microscopy study. Neuroscience 104:311–324

    Article  PubMed  CAS  Google Scholar 

  • Zozulya A, Weidenfeller C, Galla H-G (2008) Pericyte-endothelial cell interaction increases MMP-9 secretion at the blood-brain barrier in vitro. Brain Res 1189:1–11

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartwig Wolburg.

Additional information

Any work of our own cited in this review was supported by grants from the Deutsche Krebshilfe (to H.W.), the Deutsche Forschungsgemeinschaft (to H.W.), and the Hertie-Foundation (to H.W. and to Britta Engelhardt, Bern, Switzerland).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolburg, H., Noell, S., Mack, A. et al. Brain endothelial cells and the glio-vascular complex. Cell Tissue Res 335, 75–96 (2009). https://doi.org/10.1007/s00441-008-0658-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-008-0658-9

Keywords

Navigation