Skip to main content

Advertisement

Log in

Involvement of AP-2rep in morphogenesis of the axial mesoderm in Xenopus embryo

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

We have previously isolated a cDNA clone coding for Xenopus AP-2rep (activator protein-2 repressor), a member of the Krüppel-like factor family, and reported its expression pattern in developing Xenopus embryos. In the present study, the physiological function of AP-2rep in the morphogenetic movements of the dorsal mesoderm and ectoderm was investigated. Embryos injected with either AP-2rep or VP16repC (a dominant-negative mutant) into the dorsal marginal zone at the 4-cell stage exhibited abnormal morphology in dorsal structures. Both AP-2rep and VP16repC also inhibited the elongation of animal cap explants treated with activin without affecting the expression of differentiation markers. Whole-mount in situ hybridization analysis revealed that expression of brachyury and Wnt11 was greatly suppressed by injection of VP16repC or AP-2rep morpholino, but expression was restored by the simultaneous injection of wild-type AP-2rep RNA. Furthermore, the morphogenetic abnormality induced by injection of VP16repC or AP-2rep morpholino was restored by simultaneous injection of brachyury or Wnt11 mRNA. These results show that AP-2rep is involved in the morphogenesis of the mesoderm at the gastrula stage, via the brachyury and/or Wnt pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Borchers A, Fonar Y, Frank D, Baker JC (2006) XNF-ATc3 affects neural convergent extension. Development 133:1745–1755

    Article  PubMed  CAS  Google Scholar 

  • Carron C, Bourdelas A, Li HY, Boucaut JC, Shi DL (2005) Antagonistic interaction between IGF and Wnt/JNK signaling in convergent extension in Xenopus embryo. Mech Dev 122:1234–1247

    Article  PubMed  CAS  Google Scholar 

  • Chung HA, Hyodo-Miura J, Nagamune T, Ueno N (2005) FGF signal regulates gastrulation cell movements and morphology through its target NRH. Dev Biol 282:95–110

    Article  PubMed  CAS  Google Scholar 

  • Clements D, Friday RV, Woodland HR (1999) Mode of action of VegT in mesoderm and endoderm formation. Development 126:4903–4911

    PubMed  CAS  Google Scholar 

  • Conlon FL, Smith JC (1999) Interference with brachyury function inhibits convergent extension, causes apoptosis, and reveals separate requirements in the FGF and activin signalling pathways. Dev Biol 213:85–100

    Article  PubMed  CAS  Google Scholar 

  • Conlon FL, Sedgwick SG, Weston KM, Smith JC (1996) Inhibition of Xbra transcription activation causes defects in mesodermal patterning and reveals autoregulation of Xbra in dorsal mesoderm. Development 122:2427–2435

    PubMed  CAS  Google Scholar 

  • Darken RS, Scola AM, Rakeman AS, Das G, Mlodzik M, Wilson PA (2002) The planar polarity gene strabismus regulates convergent extension movements in Xenopus. EMBO J 21:976–985

    Article  PubMed  CAS  Google Scholar 

  • Davidson LA, Keller RE (1999) Neural tube closure in Xenopus laevis involves medial migration, directed protrusive activity, cell intercalation and convergent extension. Development 126:4547–4556

    PubMed  CAS  Google Scholar 

  • Elul T, Keller R (2000) Monopolar protrusive activity: a new morphogenic cell behavior in the neural plate dependent on vertical interactions with the mesoderm in Xenopus. Dev Biol 224:3–19

    Article  PubMed  CAS  Google Scholar 

  • Goto T, Hasegawa K, Kinoshita T, Kubota HY (2001) A novel POZ/zinc finger protein, champignon, interferes with gastrulation movements in Xenopus. Dev Dyn 221:14–25

    Article  PubMed  CAS  Google Scholar 

  • Gotoh M, Izutsu Y, Maéno M (2003) Complementary expression of AP-2 and AP-2rep in ectodermal derivatives of Xenopus embryos. Dev Genes Evol 213:363–367

    Article  PubMed  CAS  Google Scholar 

  • Hardin J, Keller R (1988) The behaviour and function of bottle cells during gastrulation of Xenopus laevis. Development 103:211–230

    PubMed  CAS  Google Scholar 

  • Homma M, Inui M, Fukui A, Michiue T, Okabayashi K, Asashima M (2007) A novel gene, BENI is required for the convergent extension during Xenopus laevis gastrulation. Dev Biol 303:270–280

    Article  PubMed  CAS  Google Scholar 

  • Imhof A, Schuierer M, Werner O, Moser M, Roth C, Bauer R, Buettner R (1999) Transcriptional regulation of the AP-2α promoter by BTEB-1 and AP-2rep, a novel wt-1/erg-related zinc finger repressor. Mol Cell Biol 19:194–204

    PubMed  CAS  Google Scholar 

  • Isaacs HV, Pownall ME, Slack JM (1994) eFGF regulates Xbra expression during Xenopus gastrulation. EMBO J 13:4469–4481

    PubMed  CAS  Google Scholar 

  • Keller RE (1980) The cellular basis of epiboly: an SEM study of deep-cell rearrangement during gastrulation in Xenopus laevis. J Embryol Exp Morphol 60:201–234

    PubMed  CAS  Google Scholar 

  • Keller R, Shih J, Sater A (1992) The cellular basis of the convergence and extension of the Xenopus neural plate. Dev Dyn 193:199–217

    PubMed  CAS  Google Scholar 

  • Keller R, Davidson L, Edlund A, Elul T, Ezin M, Shook D, Skoglund P (2000) Mechanisms of convergence and extension by cell intercalation. Philos Trans R Soc Lond Biol 355:897–922

    Article  PubMed  CAS  Google Scholar 

  • Kim GH, Han JK (2005) JNK and ROKα function in the noncanonical Wnt/RhoA signaling pathway to regulate Xenopus convergent extension movements. Dev Dyn 232:958–968

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita N, Iioka H, Miyakoshi A, Ueno N (2003) PKCδ is essential for Dishevelled function in a noncanonical Wnt pathway that regulates Xenopus convergent extension movements. Genes Dev 17:1663–1676

    Article  PubMed  CAS  Google Scholar 

  • Klymkowsky MW, Hanken J (1991) Whole-mount staining of Xenopus and other vertebrates. Methods Cell Biol 36:419–441

    Article  PubMed  CAS  Google Scholar 

  • Kofron M, Demel T, Xanthos J, Lohr J, Sun B, Sive H, Osada S, Wright C, Wylie C, Heasman J (1999) Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFβ growth factors. Development 126:5759–5770

    PubMed  CAS  Google Scholar 

  • Kühl M (2002) Non-canonical Wnt signaling in Xenopus: regulation of axis formation and gastrulation. Semin Cell Dev Biol 13:243–249

    Article  PubMed  Google Scholar 

  • Kwan KM, Kirschner MW (2003) Xbra functions as a switch between cell migration and convergent extension in the Xenopus gastrula. Development 130:1961–1972

    Article  PubMed  CAS  Google Scholar 

  • Luo T, Matsuo-Takasaki M, Thomas ML, Weeks DL, Sargent TD (2002) Transcription factor AP-2 is an essential and direct regulator of epidermal development in Xenopus. Dev Biol 245:136–144

    Article  PubMed  CAS  Google Scholar 

  • Luo T, Leedagger YH, Saint-Jeannet JP, Sargent TD (2003) Induction of neural crest in Xenopus by transcription factor AP2α. Proc Natl Acad Sci USA 100:532–537

    Article  PubMed  CAS  Google Scholar 

  • Luo T, Zhang Y, Khadka D, Rangarajan J, Cho KW, Sargent TD (2005) Regulatory targets for transcription factor AP2 in Xenopus embryos. Dev Growth Differ 47:403–413

    Article  PubMed  CAS  Google Scholar 

  • Mlodzik M (1999) Planar polarity in the Drosophila eye: a multi-faceted view of signaling specificity and cross-talk. EMBO J 18:6873–6879

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop PD, Faber J (1994) Normal table of Xenopus laevis (Daudin). Garland, New York

    Google Scholar 

  • Nottoli T, Hagopian-Donaldson S, Zhang J, Perkins A, Williams T (1998) AP-2-null cells disrupt morphogenesis of the eye, face, and limbs in chimeric mice. Proc Natl Acad Sci USA 95:13714–13719

    Article  PubMed  CAS  Google Scholar 

  • Ohkawara B, Yamamoto TS, Tada M, Ueno N (2003) Role of glypican 4 in the regulation of convergent extension movements during gastrulation in Xenopus laevis. Development 130:2129–2138

    Article  PubMed  CAS  Google Scholar 

  • Oates AC, Pratt SJ, Vail B, Yan YL, Ho RK, Johnson SL, Postlethwait JH, Zon LI (2001) The zebrafish klf gene family. Blood 15:1792–1801

    Article  Google Scholar 

  • Roth C, Schuiere M, Günther K, Buettner R (2000) Genomic structure and DNA binding properties of the human zinc finger transcriptional repressor AP-2rep (KLF12). Genomics 63:384–390

    Article  PubMed  CAS  Google Scholar 

  • Saka Y, Tada M, Smith JC (2000) A screen for targets of the Xenopus T-box gene Xbra. Mech Dev 93:27–39

    Article  PubMed  CAS  Google Scholar 

  • Schorle H, Meier P, Buchrt M, Jaenisch R, Mitchell PJ (1996) Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature 381:235–238

    Article  PubMed  CAS  Google Scholar 

  • Shain DH, Züber MX (1996) Sodium dodecyl sulfate (SDS)-based whole-mount in situ hybridization of Xenopus embryo. J Biochem Biophys Meth 31:185–188

    Article  PubMed  CAS  Google Scholar 

  • Shibata M, Itoh M, Hikasa H, Taira S, Taira M (2005) Role of crescent in convergent extension movements by modulating Wnt signaling in early Xenopus embryogenesis. Mech Dev 122:1322–1339

    Article  PubMed  CAS  Google Scholar 

  • Tada M, Smith JC (2000) Xwnt11 is a target of Xenopus brachyury: regulation of gastrulation movements via dishevelled, but not through the canonical Wnt pathway. Development 127:2227–2238

    PubMed  CAS  Google Scholar 

  • Tada M, Concha ML, Heisenberg CP (2002) Non-canonical Wnt signalling and regulation of gastrulation movements. Semin Cell Dev Biol 13:251–260

    Article  PubMed  CAS  Google Scholar 

  • Tahinci E, Thorne CA, Franklin JL, Salic A, Christian KM, Lee LA, Coffey RJ, Lee E (2007) Lrp6 is required for convergent extension during Xenopus gastrulation. Development 134:4095–4106

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi M, Nakabayashi J, Sakaguchi T, Yamamoto TS, Takahashi H, Takeda H, Ueno N (2003) The prickle-related gene in vertebrates is essential for gastrulation cell movements. Curr Biol 13:674–679

    Article  PubMed  CAS  Google Scholar 

  • Turner J, Crossley M (1999) Mammalian Krüppel-like transcription factors: more than just a pretty finger. Trends Biochem Sci 24:236–240

    Article  PubMed  CAS  Google Scholar 

  • Wallingford JB, Harland RM (2001) Xenopus Dishevelled signaling regulates both neural and mesodermal convergent extension: parallel forces elongating the body axis. Development 128:2581–2592

    PubMed  CAS  Google Scholar 

  • Wallingford JB, Harland RM (2002) Neural tube closure requires Dishevelled-dependent convergent extension of the midline. Development 129:5815–5825

    Article  PubMed  CAS  Google Scholar 

  • Wallingford JB, Rowning BA, Vogeli KM, Rothbacher U, Fraser SE, Harland RM (2000) Dishevelled controls cell polarity during Xenopus gatrulation. Nature 405:81–85

    Article  PubMed  CAS  Google Scholar 

  • West-Mays JA, Zhang J, Nottoli T, Hagopian-Donaldson S, Libby D, Strissel KJ, Williams T (1999) AP-2α transcription factor is required for early morphogenesis of the lens vesicle. Dev Biol 206:46–62

    Article  PubMed  CAS  Google Scholar 

  • West-Mays JA, Clyle BM, Piatigorsky J, Papagiotas S, Libby D (2002) Ectopic expression of AP-2α transcription factor in the lens disrupts fiber cell differentiation. Dev Biol 245:13–27

    Article  PubMed  CAS  Google Scholar 

  • West-Mays JA, Sivak JM, Papagiotas SS, Kim J, Nottoli T, Williams T, Fini ME (2003) Positive influence of AP-2α transcription factor on cadherin gene expression and differentiation of the ocular surface. Differentiation 71:206–216

    Article  PubMed  CAS  Google Scholar 

  • Wilson V, Manson L, Skarnes WC, Beddington RS (1995) The T gene is necessary for normal mesodermal morphogenetic cell movements during gastrulation. Development 121:877–886

    PubMed  CAS  Google Scholar 

  • Winklbauer R, Schürfeld M (1999) Vegetal rotation, a new gastrulation movement involved in the internalization of the mesoderm and endoderm in Xenopus. Development 126:3703–3713

    PubMed  CAS  Google Scholar 

  • Zhang J, Hagopian-Donaldson S, Serbedzija G, Elsemore J, Plehn-Dujowich D, McMahon AP, Flavell RA, Williams T (1996) Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2. Nature 381:238–241

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. R. Buettner and M. Asashima for supplying plasmids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsugu Maéno.

Additional information

This work was partly supported by a grant-in-aid from The Ministry of Education, Science, and Culture of Japan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement Fig. 1.

Differentiation of neural, muscle, and notochord tissues occurred in AP-2rep- or VP16repC-injected embryos. Embryos were injected with AP-2rep (1000 pg) or VP16repC (100 pg) into the dorsal and ventral marginal zone regions (all the blastomeres) at the 4-cell stage and cultured until stage 39. Expression of N-CAM (a-c), muscle actin (d-f), and keratan sulfate (g-i) was analyzed by whole-mount antibody staining (arrows positive signals stained by each antibody). All the embryos injected with either AP-2rep or VP16repC show positive staining with these markers (a, n=2; b, n=5; c, n=5; d, n=2; e, n=5; f, n=5; g, n=4; h, n=5; i, n=5) (PDF 70.32 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, Y., Gotoh, M., Ujiie, Y. et al. Involvement of AP-2rep in morphogenesis of the axial mesoderm in Xenopus embryo. Cell Tissue Res 335, 357–369 (2009). https://doi.org/10.1007/s00441-008-0712-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-008-0712-7

Keywords

Navigation