Skip to main content

Advertisement

Log in

Endogenous voltage gradients as mediators of cell-cell communication: strategies for investigating bioelectrical signals during pattern formation

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Alongside the well-known chemical modes of cell-cell communication, we find an important and powerful system of bioelectrical signaling: changes in the resting voltage potential (Vmem) of the plasma membrane driven by ion channels, pumps and gap junctions. Slow Vmem changes in all cells serve as a highly conserved, information-bearing pathway that regulates cell proliferation, migration and differentiation. In embryonic and regenerative pattern formation and in the disorganization of neoplasia, bioelectrical cues serve as mediators of large-scale anatomical polarity, organ identity and positional information. Recent developments have resulted in tools that enable a high-resolution analysis of these biophysical signals and their linkage with upstream and downstream canonical genetic pathways. Here, we provide an overview for the study of bioelectric signaling, focusing on state-of-the-art approaches that use molecular physiology and developmental genetics to probe the roles of bioelectric events functionally. We highlight the logic, strategies and well-developed technologies that any group of researchers can employ to identify and dissect ionic signaling components in their own work and thus to help crack the bioelectric code. The dissection of bioelectric events as instructive signals enabling the orchestration of cell behaviors into large-scale coherent patterning programs will enrich on-going work in diverse areas of biology, as biophysical factors become incorporated into our systems-level understanding of cell interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adams DS (2008) A new tool for tissue engineers: ions as regulators of morphogenesis during development and regeneration. Tissue Eng 14:1461–1468

    Article  CAS  Google Scholar 

  • Adams DS, Levin M (2006a) Inverse drug screens: a rapid and inexpensive method for implicating molecular targets. Genesis 44:530–540

    Article  PubMed  CAS  Google Scholar 

  • Adams DS, Levin M (2006b) Strategies and techniques for investigation of biophysical signals in patterning. In: Whitman M, Sater AK (eds) Analysis of growth factor signaling in embryos. CRC Press, Boca Raton, pp 177–262

    Google Scholar 

  • Adams DS, Levin M (2012a) General principles for measuring resting membrane potential and ion concentration using fluorescent bioelectricity reporters. Cold Spring Harbor Protoc (in press)

  • Adams DS, Levin M (2012b) Measuring resting membrane potential using the fluorescent voltage reporters DiBAC4(3) and CC2-DMPE. Cold Spring Harbor Protoc (in press)

  • Adams DS, Robinson KR, Fukumoto T, Yuan S, Albertson RC, Yelick P, Kuo L, McSweeney M, Levin M (2006) Early, H+−V-ATPase-dependent proton flux is necessary for consistent left-right patterning of non-mammalian vertebrates. Development 133:1657–1671

    Article  PubMed  CAS  Google Scholar 

  • Adams DS, Masi A, Levin M (2007) H+ pump-dependent changes in membrane voltage are an early mechanism necessary and sufficient to induce Xenopus tail regeneration. Development 134:1323–1335

    Article  PubMed  CAS  Google Scholar 

  • Agladze K, Budriene L, Ivanitsky G, Krinsky V, Shakhbazyan V, Tsyganov M (1993) Wave mechanisms of pattern formation in microbial populations. Proc Biol Sci 253:131–135

    Article  PubMed  CAS  Google Scholar 

  • Akemann W, Lundby A, Mutoh H, Knopfel T (2009) Effect of voltage sensitive fluorescent proteins on neuronal excitability. Biophys J 96:3959–3976

    Article  PubMed  CAS  Google Scholar 

  • Akemann W, Mutoh H, Perron A, Rossier J, Knopfel T (2010) Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nat Methods 7:643–649

    Article  PubMed  CAS  Google Scholar 

  • Albert SF, Wong E (1991) Electrical stimulation of bone repair. Clin Podiatr Med Surg 8:923–935

    PubMed  CAS  Google Scholar 

  • Altizer A, Moriarty L, Bell S, Schreiner C, Scott W, Borgens R (2001) Endogenous electric current is associated with normal development of the vertebrate limb. Dev Dyn 221:391–401

    Article  PubMed  CAS  Google Scholar 

  • Anderson JD (1951) Galvanotaxis of slime mold. J Gen Physiol 35:1–16

    Article  PubMed  CAS  Google Scholar 

  • Arcangeli A (2005) Expression and role of hERG channels in cancer cells. Novartis Found Symp 266:225–232

    Article  PubMed  CAS  Google Scholar 

  • Arcangeli A, Carla M, Bene M, Becchetti A, Wanke E, Olivotto M (1993) Polar/apolar compounds induce leukemia cell differentiation by modulating cell-surface potential. Proc Natl Acad Sci USA 90:5858–5862

    Article  PubMed  CAS  Google Scholar 

  • Arrenberg AB, Del Bene F, Baier H (2009) Optical control of zebrafish behavior with halorhodopsin. Proc Natl Acad Sci USA 106:17968-17973

    Article  PubMed  CAS  Google Scholar 

  • Arrenberg AB, Stainier DY, Baier H, Huisken J (2010) Optogenetic control of cardiac function. Science 330:971–974

    Article  PubMed  CAS  Google Scholar 

  • Aryasomayajula A, Derix J, Perike S, Gerlach G, Funk RH (2010) DC microelectrode array for investigating the intracellular ion changes. Biosens Bioelectron 26:1268–1272

    Article  PubMed  CAS  Google Scholar 

  • Asashima M, Shimada K, Pfeiffer CJ (1991) Magnetic shielding induces early developmental abnormalities in the newt, Cynops pyrrhogaster. Bioelectromagnetics 12:215–224

    Article  PubMed  CAS  Google Scholar 

  • Aw S, Levin M (2009) Is left-right asymmetry a form of planar cell polarity? Development 136:355–366

    Article  PubMed  CAS  Google Scholar 

  • Aw S, Adams DS, Qiu D, Levin M (2008) H, K-ATPase protein localization and Kir4.1 function reveal concordance of three axes during early determination of left-right asymmetry. Mech Dev 125:353–372

    Article  PubMed  CAS  Google Scholar 

  • Aw S, Koster J, Pearson W, Nichols C, Shi NQ, Carneiro K, Levin M (2010) The ATP-sensitive K(+)-channel (K(ATP)) controls early left-right patterning in Xenopus and chick embryos. Dev Biol 346:39–53

    Article  PubMed  CAS  Google Scholar 

  • Baker BJ, Mutoh H, Dimitrov D, Akemann W, Perron A, Iwamoto Y, Jin L, Cohen LB, Isacoff EY, Pieribone VA, Hughes T, Knopfel T (2008) Genetically encoded fluorescent sensors of membrane potential. Brain Cell Biol 36:53–67

    Article  PubMed  CAS  Google Scholar 

  • Bansagi T Jr, Vanag VK, Epstein IR (2011) Tomography of reaction–diffusion microemulsions reveals three-dimensional Turing patterns. Science 331:1309–1312

    Article  PubMed  CAS  Google Scholar 

  • Barth LG, Barth LJ (1974a) Ionic regulation of embryonic induction and cell differentiation in Rana pipiens. Dev Biol 39:1–22

    Article  PubMed  CAS  Google Scholar 

  • Barth LJ, Barth LG (1974b) Effect of the potassium ion on induction of notochord from gastrula ectoderm of Rana pipiens. Biol Bull 146:313–325

    Article  PubMed  CAS  Google Scholar 

  • Bashor CJ, Horwitz AA, Peisajovich SG, Lim WA (2010) Rewiring cells: synthetic biology as a tool to interrogate the organizational principles of living systems. Annu Rev Biophys 39:515–537

    Article  PubMed  CAS  Google Scholar 

  • Beane WS, Morokuma J, Adams DS, Levin M (2011) A chemical genetics approach reveals H, K-ATPase-mediated membrane voltage is required for planarian head regeneration. Chem Biol 18:77–89

    Article  PubMed  CAS  Google Scholar 

  • Beaudoin JD, Perreault JP (2008) Potassium ions modulate a G-quadruplex-ribozyme's activity. RNA 14:1018–1025

    Article  PubMed  CAS  Google Scholar 

  • Bedner P, Niessen H, Odermatt B, Willecke K, Harz H (2003) A method to determine the relative cAMP permeability of connexin channels. Exp Cell Res 291:25–35

    Article  PubMed  CAS  Google Scholar 

  • Beech JA (1997) Bioelectric potential gradients may initiate cell cycling: ELF and zeta potential gradients may mimic this effect. Bioelectromagnetics 18:341–348

    Article  PubMed  CAS  Google Scholar 

  • Bendahhou S, Donaldson MR, Plaster NM, Tristani-Firouzi M, Fu YH, Ptacek LJ (2003) Defective potassium channel Kir2.1 trafficking underlies Andersen-Tawil syndrome. J Biol Chem 278:51779–51785

    Article  PubMed  CAS  Google Scholar 

  • Bennekou P, Barksmann TL, Jensen LR, Kristensen BI, Christophersen P (2004) Voltage activation and hysteresis of the non-selective voltage-dependent channel in the intact human red cell. Bioelectrochemistry 62:181–185

    Article  PubMed  CAS  Google Scholar 

  • Bentrup F, Sandan T, Jaffe L (1967) Induction of polarity in Fucus eggs by potassium ion gradients. Protoplasma 64:254–266

    Article  Google Scholar 

  • Bever L van, Poitry S, Faure C, Norman RI, Roatti A, Baertschi AJ (2004) Pore loop-mutated rat KIR6.1 and KIR6.2 suppress KATP current in rat cardiomyocytes. Am J Physiol Heart Circ Physiol 287:H850–859

    Article  PubMed  Google Scholar 

  • Binggeli R, Weinstein R (1986) Membrane potentials and sodium channels: hypotheses for growth regulation and cancer formation based on changes in sodium channels and gap junctions. J Theor Biol 123:377–401

    Article  PubMed  CAS  Google Scholar 

  • Bittman KS, Panzer JA, Balice-Gordon RJ (2004) Patterns of cell-cell coupling in embryonic spinal cord studied via ballistic delivery of gap-junction-permeable dyes. J Comp Neurol 477:273–285

    Article  PubMed  CAS  Google Scholar 

  • Blackiston D, Shomrat T, Nicolas CL, Granata C, Levin M (2010) A second-generation device for automated training and quantitative behavior analyses of molecularly-tractable model organisms. PLoS One 5:e14370

    Article  PubMed  CAS  Google Scholar 

  • Blackiston D, Adams DS, Lemire JM, Lobikin M, Levin M (2011) Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway. Dis Model Mech 4:67–85

    Article  PubMed  CAS  Google Scholar 

  • Boettiger AN, Oster G (2009) Emergent complexity in simple neural systems. Commun Integr Biol 2:467–470

    Article  PubMed  Google Scholar 

  • Boettiger A, Ermentrout B, Oster G (2009) The neural origins of shell structure and pattern in aquatic mollusks. Proc National Acad Sci USA 106:6837–6842

    Article  CAS  Google Scholar 

  • Borgens RB (1982) What is the role of naturally produced electric current in vertebrate regeneration and healing. Int Rev Cytol 76:245–298

    Article  PubMed  CAS  Google Scholar 

  • Borgens RB (1986) The role of natural and applied electric fields in neuronal regeneration and development. Prog Clin Biol Res 210:239–250

    PubMed  CAS  Google Scholar 

  • Borgens RB, Shi R (1995) Uncoupling histogenesis from morphogenesis in the vertebrate embryo by collapse of the transneural tube potential. Dev Dyn 203:456–467

    Article  PubMed  CAS  Google Scholar 

  • Borgens RB, Blight AR, McGinnis ME (1990) Functional recovery after spinal cord hemisection in guinea pigs: the effects of applied electric fields. J Comp Neurol 296:634–653

    Article  PubMed  CAS  Google Scholar 

  • Borgens RB, Blight AR, Murphy DJ (1986) Axonal regeneration in spinal cord injury: a perspective and new technique. J Comp Neurol 250:157–167

    Article  PubMed  CAS  Google Scholar 

  • Borgens R, Robinson K, Vanable J, McGinnis M (1989) Electric fields in vertebrate repair. Liss, New York

    Google Scholar 

  • Brackenbury WJ, Djamgoz MB (2006) Activity-dependent regulation of voltage-gated Na+ channel expression in Mat-LyLu rat prostate cancer cell line. J Physiol (Lond) 573:343–356

    Article  CAS  Google Scholar 

  • Braet K, Vandamme W, Martin PE, Evans WH, Leybaert L (2003) Photoliberating inositol-1,4,5-trisphosphate triggers ATP release that is blocked by the connexin mimetic peptide gap 26. Cell Calcium 33:37–48

    Article  PubMed  CAS  Google Scholar 

  • Brock A, Chang H, Huang S (2009) Non-genetic heterogeneity—a mutation-independent driving force for the somatic evolution of tumours. Nat Rev Genet 10:336–342

    Article  PubMed  CAS  Google Scholar 

  • Burr HS (1944) The meaning of bioelectric potentials. Yale J Biol Med 16:353

    PubMed  CAS  Google Scholar 

  • Burr HS, Hovland CI (1937) Bio-electric correlates of development in Amblystoma. Yale J Biol Med 9:540–549

    PubMed  CAS  Google Scholar 

  • Burr HS, Northrop F (1935) The electrodynamic theory of life. Q Rev Biol 10:322–333

    Article  CAS  Google Scholar 

  • Burr HS, Sinnott EW (1944) Electrical correlates of form in cucurbit fruits. Am J Botany 31:249–253

    Article  Google Scholar 

  • Bustamante JO (1994) Nuclear electrophysiology. J Membr Biol 138:105–112

    PubMed  CAS  Google Scholar 

  • Bustamante JO, Liepins A, Hanover JA (1994) Nuclear pore complex ion channels (review). Mol Membr Biol 11:141–150

    Article  PubMed  CAS  Google Scholar 

  • Bustamante JO, Hanover JA, Liepins A (1995) The ion channel behavior of the nuclear pore complex. J Membr Biol 146:239–251

    PubMed  CAS  Google Scholar 

  • Carneiro K, Donnet C, Rejtar T, Karger BL, Barisone GA, Diaz E, Kortagere S, Lemire JM, Levin M (2011) Histone deacetylase activity is necessary for left-right patterning during vertebrate development. BMC Dev Biol 11:29

    Article  PubMed  CAS  Google Scholar 

  • Certal AC, Almeida RB, Carvalho LM, Wong E, Moreno N, Michard E, Carneiro J, Rodriguez-Leon J, Wu HM, Cheung AY, Feijo JA (2008) Exclusion of a proton ATPase from the apical membrane is associated with cell polarity and tip growth in Nicotiana tabacum pollen tubes. Plant Cell 20:614–634

    Article  PubMed  CAS  Google Scholar 

  • Chen B, Liang J, Tian X, Liu X (2008) G-quadruplex structure: a target for anticancer therapy and a probe for detection of potassium. Biochemistry (Mosc) 73:853–861

    Article  CAS  Google Scholar 

  • Child CM (1941) Patterns and problems of development. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Cifra M, Fields JZ, Farhadi A (2011) Electromagnetic cellular interactions. Prog Biophys Mol Biol 105:223–246

    Article  PubMed  CAS  Google Scholar 

  • Coelho CN, Kosher RA (1991a) Gap junctional communication during limb cartilage differentiation. Dev Biol 144:47–53

    Article  PubMed  CAS  Google Scholar 

  • Coelho CN, Kosher RA (1991b) A gradient of gap junctional communication along the anterior-posterior axis of the developing chick limb bud. Dev Biol 148:529–535

    Article  PubMed  CAS  Google Scholar 

  • Cone CD (1970) Variation of the transmembrane potential level as a basic mechanism of mitosis control. Oncology 24:438–470

    Article  PubMed  CAS  Google Scholar 

  • Cone CD (1971) Unified theory on the basic mechanism of normal mitotic control and oncogenesis. J Theor Biol 30:151–181

    Article  PubMed  CAS  Google Scholar 

  • Cone CD (1974) The role of the surface electrical transmembrane potential in normal and malignant mitogenesis. Ann NY Acad Sci 238:420–435

    Article  PubMed  CAS  Google Scholar 

  • Cone CD, Cone CM (1976) Induction of mitosis in mature neurons in central nervous system by sustained depolarization. Science 192:155–158

    Article  PubMed  CAS  Google Scholar 

  • Cone CD, Tongier M (1971) Control of somatic cell mitosis by simulated changes in the transmembrane potential level. Oncology 25:168–182

    Article  PubMed  CAS  Google Scholar 

  • Cone CD, Tongier M (1973) Contact inhibition of division: involvement of the electrical transmembrane potential. J Cell Physiol 82:373–386

    Article  PubMed  CAS  Google Scholar 

  • Cooper MS (1984) Gap junctions increase the sensitivity of tissue cells to exogenous electric fields. J Theor Biol 111:123–130

    Article  PubMed  CAS  Google Scholar 

  • Cooper MS, Miller JP, Fraser SE (1989) Electrophoretic repatterning of charged cytoplasmic molecules within tissues coupled by gap junctions by externally applied electric fields. Dev Biol 132:179–188

    Article  PubMed  CAS  Google Scholar 

  • Davies A, Douglas L, Hendrich J, Wratten J, Tran Van Minh A, Foucault I, Koch D, Pratt WS, Saibil HR, Dolphin AC (2006) The calcium channel alpha2delta-2 subunit partitions with CaV2.1 into lipid rafts in cerebellum: implications for localization and function. J Neurosci 26:8748–8757

    Article  PubMed  CAS  Google Scholar 

  • Davies E (2004) New functions for electrical signals in plants. New Phytol 161:607–610

    Article  Google Scholar 

  • Davies JA (2008) Synthetic morphology: prospects for engineered, self-constructing anatomies. J Anat 212:707–719

    Article  PubMed  CAS  Google Scholar 

  • De Mattei M, Gagliano N, Moscheni C, Dellavia C, Calastrini C, Pellati A, Gioia M, Caruso A, Stabellini G (2005) Changes in polyamines, c-myc and c-fos gene expression in osteoblast-like cells exposed to pulsed electromagnetic fields. Bioelectromagnetics 26:207–214

    Article  PubMed  CAS  Google Scholar 

  • Dubrov A (1978) The geomagnetic field and life. Plenum, New York

    Google Scholar 

  • Elson E (2006) Developmental control in animals and a biological role for DNA charge transfer. Prog Biophys Mol Biol 95:1–15

    Article  PubMed  CAS  Google Scholar 

  • Elson E (2009) II. Model building: an electrical theory of control of growth and development in animals, prompted by studies of exogenous magnetic field effects (paper I), and evidence of DNA current conduction, in vitro. Electromagnetic Biol Med 28:283–309

    CAS  Google Scholar 

  • Esser AT, Smith KC, Weaver JC, Levin M (2006) Mathematical model of morphogen electrophoresis through gap junctions. Dev Dyn 235:2144–2159

    Article  PubMed  CAS  Google Scholar 

  • Farhadi A, Forsyth C, Banan A, Shaikh M, Engen P, Fields JZ, Keshavarzian A (2007) Evidence for non-chemical, non-electrical intercellular signaling in intestinal epithelial cells. Bioelectrochemistry 71:142–148

    Article  PubMed  CAS  Google Scholar 

  • Fels D (2009) Cellular communication through light. PLoS One 4:e5086

    Article  PubMed  CAS  Google Scholar 

  • Fitzharris G, Baltz JM (2006) Granulosa cells regulate intracellular pH of the murine growing oocyte via gap junctions: development of independent homeostasis during oocyte growth. Development 133:591–599

    Article  PubMed  CAS  Google Scholar 

  • Forrester JV, Lois N, Zhao M, McCaig C (2007) The spark of life: the role of electric fields in regulating cell behaviour using the eye as a model system. Ophthalmic Res 39:4–16

    Article  PubMed  Google Scholar 

  • Fortin DL, Banghart MR, Dunn TW, Borges K, Wagenaar DA, Gaudry Q, Karakossian MH, Otis TS, Kristan WB, Trauner D, Kramer RH (2008) Photochemical control of endogenous ion channels and cellular excitability. Nat Methods 5:331–338

    PubMed  CAS  Google Scholar 

  • Fortin DL, Dunn TW, Kramer RH (2011) Engineering light-regulated ion channels. Cold Spring Harb Protoc 2011:579–585

    Article  PubMed  Google Scholar 

  • Fraser SP, Diss JK, Chioni AM, Mycielska ME, Pan H, Yamaci RF, Pani F, Siwy Z, Krasowska M, Grzywna Z, Brackenbury WJ, Theodorou D, Koyuturk M, Kaya H, Battaloglu E, De Bella MT, Slade MJ, Tolhurst R, Palmieri C, Jiang J, Latchman DS, Coombes RC, Djamgoz MB (2005) Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res 11:5381–5389

    Article  PubMed  CAS  Google Scholar 

  • Fukumoto T, Blakely R, Levin M (2005a) Serotonin transporter function is an early step in left-right patterning in chick and frog embryos. Dev Neurosci 27:349–363

    Article  PubMed  CAS  Google Scholar 

  • Fukumoto T, Kema IP, Levin M (2005b) Serotonin signaling is a very early step in patterning of the left-right axis in chick and frog embryos. Curr Biol 15:794–803

    Article  PubMed  CAS  Google Scholar 

  • Funk RH, Monsees T, Ozkucur N (2009) Electromagnetic effects—from cell biology to medicine. Prog Histochem Cytochem 43:177–264

    Article  PubMed  CAS  Google Scholar 

  • Funk RH, Monsees TK (2006) Effects of electromagnetic fields on cells: physiological and therapeutical approaches and molecular mechanisms of interaction. A review. Cells Tissues Organs 182:59–78

    Article  PubMed  Google Scholar 

  • Gallaher J, Bier M, Heukelom JS van (2010) First order phase transition and hysteresis in a cell's maintenance of the membrane potential—an essential role for the inward potassium rectifiers. Biosystems 101:149–155

    Article  PubMed  CAS  Google Scholar 

  • Ganapathy V, Thangaraju M, Gopal E, Martin PM, Itagaki S, Miyauchi S, Prasad PD (2008) Sodium-coupled monocarboxylate transporters in normal tissues and in cancer. AAPS J 10:193–199

    Article  PubMed  CAS  Google Scholar 

  • Gautam SG, Perron A, Mutoh H, Knopfel T (2009) Exploration of fluorescent protein voltage probes based on circularly permuted fluorescent proteins. Front Neuroeng 2:14

    Article  PubMed  CAS  Google Scholar 

  • Gmitrov J, Gmitrova A (2004) Geomagnetic field effect on cardiovascular regulation. Bioelectromagnetics 25:92–101

    Article  PubMed  Google Scholar 

  • Gonzalez JE, Tsien RY (1997) Improved indicators of cell membrane potential that use fluorescence resonance energy transfer. Chem Biol 4:269–277

    Article  PubMed  CAS  Google Scholar 

  • Gradinaru V, Zhang F, Ramakrishnan C, Mattis J, Prakash R, Diester I, Goshen I, Thompson KR, Deisseroth K (2010) Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141:154–165

    Article  PubMed  CAS  Google Scholar 

  • Grossman N, Poher V, Grubb MS, Kennedy GT, Nikolic K, McGovern B, Berlinguer Palmini R, Gong Z, Drakakis EM, Neil MA, Dawson MD, Burrone J, Degenaar P (2010) Multi-site optical excitation using ChR2 and micro-LED array. J Neural Eng 7:16004

    Article  PubMed  Google Scholar 

  • Guo YM, Chen S, Shetty P, Zheng G, Lin R, Li WH (2008) Imaging dynamic cell-cell junctional coupling in vivo using Trojan-LAMP. Nat Methods 5:835–841

    Article  PubMed  CAS  Google Scholar 

  • Gupta N, Martin PM, Prasad PD, Ganapathy V (2006) SLC5A8 (SMCT1)-mediated transport of butyrate forms the basis for the tumor suppressive function of the transporter. Life Sci 78:2419–2425

    Article  PubMed  CAS  Google Scholar 

  • Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138:645–659

    Article  PubMed  CAS  Google Scholar 

  • Gurwitsch AA (1988) A historical review of the problem of mitogenetic radiation. Experientia 44:545–550

    Article  PubMed  CAS  Google Scholar 

  • Guthrie PB, Lee RE, Rehder V, Schmidt MF, Kater SB (1994) Self-recognition: a constraint on the formation of electrical coupling in neurons. J Neurosci 14:1477–1485

    PubMed  CAS  Google Scholar 

  • Harrington DB, Becker RO (1973) Electrical stimulation of RNA and protein synthesis in the frog erythrocyte. Exp Cell Res 76:95–98

    Article  PubMed  CAS  Google Scholar 

  • Harrison C, Funnel B (1964) Relationship of paleomagnetic reversals and micropaleontology in two late Caenozoic cores from the Pacific Ocean. Nature 204:566

    Article  Google Scholar 

  • Hart FX (2008) The mechanical transduction of physiological strength electric fields. Bioelectromagnetics 29:447–455

    Article  PubMed  Google Scholar 

  • He XB, Yi SH, Rhee YH, Kim H, Han YM, Lee SH, Lee H, Park CH, Lee YS, Richardson E, Kim BW (2011) Prolonged membrane depolarization enhances midbrain dopamine neuron differentiation via epigenetic histone modifications. Stem Cells 29:1861–1873

    Article  PubMed  CAS  Google Scholar 

  • Hinard V, Belin D, Konig S, Bader CR, Bernheim L (2008) Initiation of human myoblast differentiation via dephosphorylation of Kir2.1 K+ channels at tyrosine 242. Development 135:859–867

    Article  PubMed  CAS  Google Scholar 

  • Holmes TC, Berman K, Swartz JE, Dagan D, Levitan IB (1997) Expression of voltage-gated potassium channels decreases cellular protein tyrosine phosphorylation. J Neurosci 17:8964–8974

    PubMed  CAS  Google Scholar 

  • Hoptak-Solga AD, Nielsen S, Jain I, Thummel R, Hyde DR, Iovine MK (2008) Connexin43 (GJA1) is required in the population of dividing cells during fin regeneration. Dev Biol 317:541–548

    Article  PubMed  CAS  Google Scholar 

  • Hotary KB, Robinson KR (1992) Evidence of a role for endogenous electrical fields in chick embryo development. Development 114:985–996

    PubMed  CAS  Google Scholar 

  • Hotary KB, Robinson KR (1994) Endogenous electrical currents and voltage gradients in Xenopus embryos and the consequences of their disruption. Dev Biol 166:789–800

    Article  PubMed  CAS  Google Scholar 

  • House CD, Vaske CJ, Schwartz AM, Obias V, Frank B, Luu T, Sarvazyan N, Irby R, Strausberg RL, Hales TG, Stuart JM, Lee NH (2010) Voltage-gated Na+ channel SCN5A is a key regulator of a gene transcriptional network that controls colon cancer invasion. Cancer Res 70:6957–6967

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Ernberg I, Kauffman S (2009) Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semin Cell Dev Biol 20:869–876

    Article  PubMed  CAS  Google Scholar 

  • Hyman L, Bellamy A (1922) Studies on the correlation between metabolic gradients, electrical gradients, and galvanotaxis I. Biol Bull XLIII:313–347

    Article  Google Scholar 

  • Iovine MK, Higgins EP, Hindes A, Coblitz B, Johnson SL (2005) Mutations in connexin43 (GJA1) perturb bone growth in zebrafish fins. Dev Biol 278:208–219

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro K, Ando T, Watanabe O, Goto H (2010) Novel application of low pH-dependent fluorescent dyes to examine colitis. BMC Gastroenterol 10:4

    Article  PubMed  CAS  Google Scholar 

  • Iwashita M, Watanabe M, Ishii M, Chen T, Johnson SL, Kurachi Y, Okada N, Kondo S (2006) Pigment pattern in jaguar/obelix zebrafish is caused by a Kir7.1 mutation: implications for the regulation of melanosome movement. PLoS Genet 2:e197

    Article  PubMed  CAS  Google Scholar 

  • Jaffe L (1981) The role of ionic currents in establishing developmental pattern. Philos Trans R Soc Lond Biol 295:553–566

    Article  PubMed  CAS  Google Scholar 

  • Jaffe L (1982) Developmental currents, voltages, and gradients. In: Subtelny S (ed) Developmental order: its origin and regulation. Liss, New York, pp 183–215

    Google Scholar 

  • Jaffe LF (1999) Organization of early development by calcium patterns. Bioessays 21:657–667

    Article  PubMed  CAS  Google Scholar 

  • Jaffe LF, Nuccitelli R (1977) Electrical controls of development. Annu Rev Biophys Bioeng 6:445–476

    Article  PubMed  CAS  Google Scholar 

  • Jenkins LS, Duerstock BS, Borgens RB (1996) Reduction of the current of injury leaving the amputation inhibits limb regeneration in the red spotted newt. Dev Biol 178:251–262

    Article  PubMed  CAS  Google Scholar 

  • Jenrow KA, Smith CH, Liboff AR (1996) Weak extremely-low-frequency magnetic field-induced regeneration anomalies in the planarian Dugesia tigrina. Bioelectromagnetics 17:467–474

    Article  PubMed  CAS  Google Scholar 

  • Jouhou H, Yamamoto K, Homma A, Hara M, Kaneko A, Yamada M (2007) Depolarization of isolated horizontal cells of fish acidifies their immediate surrounding by activating V-ATPase. J Physiol (Lond) 585:401–412

    Article  CAS  Google Scholar 

  • Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, New York

    Google Scholar 

  • Kline D, Robinson KR, Nuccitelli R (1983) Ion currents and membrane domains in the cleaving Xenopus egg. J Cell Biol 97:1753–1761

    Article  PubMed  CAS  Google Scholar 

  • Knopfel T, Lin MZ, Levskaya A, Tian L, Lin JY, Boyden ES (2010) Toward the second generation of optogenetic tools. J Neurosci 30:14998–15004

    Article  PubMed  CAS  Google Scholar 

  • Kondo S (2002) The reaction–diffusion system: a mechanism for autonomous pattern formation in the animal skin. Genes Cells 7:535–541

    Article  PubMed  CAS  Google Scholar 

  • Kondo S, Iwashita M, Yamaguchi M (2009) How animals get their skin patterns: fish pigment pattern as a live Turing wave. Int J Dev Biol 53:851–856

    Article  PubMed  Google Scholar 

  • Konig S, Hinard V, Arnaudeau S, Holzer N, Potter G, Bader CR, Bernheim L (2004) Membrane hyperpolarization triggers myogenin and myocyte enhancer factor-2 expression during human myoblast differentiation. J Biol Chem 279:28187–28196

    Article  PubMed  CAS  Google Scholar 

  • Konig S, Beguet A, Bader CR, Bernheim L (2006) The calcineurin pathway links hyperpolarization (Kir2.1)-induced Ca2+ signals to human myoblast differentiation and fusion. Development 133:3107–3114

    Article  PubMed  CAS  Google Scholar 

  • Krishnan J, Sachdeva G, Chakravarthy VS, Radhakrishnan S (2008) Interpreting voltage-sensitivity of gap junctions as a mechanism of cardiac memory. Math Biosci 212:132–148

    Article  PubMed  CAS  Google Scholar 

  • Kumar N, Patowary A, Sivasubbu S, Petersen M, Maiti S (2008) Silencing c-MYC expression by targeting quadruplex in P1 promoter using locked nucleic acid trap. Biochemistry 47:13179–13188

    Article  PubMed  CAS  Google Scholar 

  • Kurtz I, Schrank AR (1955) Bioelectrical properties of intact and regenerating earthworms Eisenia foetida. Physiol Zool 28:322–330

    Google Scholar 

  • Lacroix J, Halaszovich CR, Schreiber DN, Leitner MG, Bezanilla F, Oliver D, Villalba-Galea CA (2011) Controlling the activity of a phosphatase and tensin homolog (PTEN) by membrane potential. J Biol Chem 286:17945–17953

    Article  PubMed  CAS  Google Scholar 

  • Lalli MJ, Johns DC, Janecki M, Liu Y, O’Rourke B, Marban E (1998) Suppression of KATP currents by gene transfer of a dominant negative Kir6.2 construct. Pflugers Archiv 436:957–961

    Article  PubMed  CAS  Google Scholar 

  • Lang F, Foller M, Lang KS, Lang PA, Ritter M, Gulbins E, Vereninov A, Huber SM (2005) Ion channels in cell proliferation and apoptotic cell death. J Membr Biol 205:147–157

    Article  PubMed  CAS  Google Scholar 

  • Lange C, Prenninger S, Knuckles P, Taylor V, Levin M, Calegari F (2011) The H(+) vacuolar ATPase maintains neural stem cells in the developing mouse cortex. Stem Cells Dev 20:843–850

    Article  PubMed  CAS  Google Scholar 

  • Lauritzen I, Zanzouri M, Honore E, Duprat F, Ehrengruber MU, Lazdunski M, Patel AJ (2003) K+−dependent cerebellar granule neuron apoptosis. Role of task leak K+ channels. J Biol Chem 278:32068–32076

    Article  PubMed  CAS  Google Scholar 

  • Levin M (2003) Bioelectromagnetic patterning fields: roles in embryonic development, regeneration, and neoplasm. Bioelectromagnetics 24:295–315

    Article  PubMed  CAS  Google Scholar 

  • Levin M (2006) Is the early left-right axis like a plant, a kidney, or a neuron? The integration of physiological signals in embryonic asymmetry. Birth Defects Res C Embryo Today 78:191–223

    Article  PubMed  CAS  Google Scholar 

  • Levin M (2007a) Gap junctional communication in morphogenesis. Prog Biophys Mol Biol 94:186–206

    Article  PubMed  CAS  Google Scholar 

  • Levin M (2007b) Large-scale biophysics: ion flows and regeneration. Trends Cell Biol 17:262–271

    Article  CAS  Google Scholar 

  • Levin M (2009a) Bioelectric mechanisms in regeneration: unique aspects and future perspectives. Semin Cell Dev Biol 20:543–556

    Article  PubMed  Google Scholar 

  • Levin M (2009b) Regeneration: recent advances, major puzzles, and biomedical opportunities. Semin Cell Dev Biol 20:515–516

    Article  PubMed  Google Scholar 

  • Levin M (2011a) Molecular bioelectricity in developmental biology: new tools and recent discoveries. Bioessays (in press)

  • Levin M (2011b) The wisdom of the body: future techniques and approaches to morphogenetic fields in regenerative medicine, developmental biology and cancer. Regen Med 6:667–673

    Article  PubMed  Google Scholar 

  • Levin M, Ernst SG (1995) Applied AC and DC magnetic fields cause alterations in the mitotic cycle of early sea urchin embryos. Bioelectromagnetics 16:231–240

    Article  PubMed  CAS  Google Scholar 

  • Levin M, Ernst SG (1997) Applied DC magnetic fields cause alterations in the time of cell divisions and developmental abnormalities in early sea urchin embryos. Bioelectromagnetics 18:255–263

    Article  PubMed  CAS  Google Scholar 

  • Levin M, Mercola M (1998) Gap junctions are involved in the early generation of left-right asymmetry. Dev Biol 203:90–105

    Article  PubMed  CAS  Google Scholar 

  • Levin M, Palmer AR (2007) Left-right patterning from the inside out: widespread evidence for intracellular control. Bioessays 29:271–287

    Article  PubMed  CAS  Google Scholar 

  • Levin M, Thorlin T, Robinson KR, Nogi T, Mercola M (2002) Asymmetries in H+/K+−ATPase and cell membrane potentials comprise a very early step in left-right patterning. Cell 111:77–89

    Article  PubMed  CAS  Google Scholar 

  • Levin M, Buznikov GA, Lauder JM (2006) Of minds and embryos: left-right asymmetry and the serotonergic controls of pre-neural morphogenesis. Dev Neurosci 28:171–185

    Article  PubMed  CAS  Google Scholar 

  • Li H, Myeroff L, Smiraglia D, Romero MF, Pretlow TP, Kasturi L, Lutterbaugh J, Rerko RM, Casey G, Issa JP, Willis J, Willson JK, Plass C, Markowitz SD (2003) SLC5A8, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancers. Proc Natl Acad Sci USA 100:8412–8417

    Article  PubMed  CAS  Google Scholar 

  • Liebau S, Propper C, Bockers T, Lehmann-Horn F, Storch A, Grissmer S, Wittekindt OH (2006) Selective blockage of Kv1.3 and Kv3.1 channels increases neural progenitor cell proliferation. J Neurochem 99:426–437

    Article  PubMed  CAS  Google Scholar 

  • Lin JY (2011) A user’s guide to channelrhodopsin variants: features, limitations and future developments. Exp Physiol 96:19–25

    Article  PubMed  Google Scholar 

  • Litovitz TA, Montrose CJ, Doinov P, Brown KM, Barber M (1994) Superimposing spatially coherent electromagnetic noise inhibits field-induced abnormalities in developing chick embryos. Bioelectromagnetics 15:105–113

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Tonegawa S (2010) Optogenetics 3.0. Cell 141:22–24

    Article  PubMed  CAS  Google Scholar 

  • Lund E (1947) Bioelectric fields and growth. University of Texas Press, Austin

    Google Scholar 

  • Lundby A, Mutoh H, Dimitrov D, Akemann W, Knopfel T (2008) Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements. PLoS One 3:e2514

    Article  PubMed  CAS  Google Scholar 

  • Lundby A, Akemann W, Knöpfel T (2010) Biophysical characterization of the fluorescent protein voltage probe VSFP2.3 based on the voltage-sensing domain of Ci-VSP. Eur Biophys J 39:1625–1635

    Article  PubMed  CAS  Google Scholar 

  • MacFarlane SN, Sontheimer H (2000) Changes in ion channel expression accompany cell cycle progression of spinal cord astrocytes. Glia 30:39–48

    Article  PubMed  CAS  Google Scholar 

  • Marsh G, Beams HW (1947) Electrical control of growth polarity in regenerating Dugesia tigrina. Fed Proc 6:163–164

    PubMed  CAS  Google Scholar 

  • Marsh G, Beams HW (1949) Electrical control of axial polarity in a regenerating annelid. Anat Rec 105:513–514

    Google Scholar 

  • Marsh G, Beams HW (1950) Electrical control of growth axis in a regenerating annelid. Anat Rec 108:512–512

    Google Scholar 

  • Marsh G, Beams HW (1952) Electrical control of morphogenesis in regenerating Dugesia tigrina. I. Relation of axial polarity to field strength. J Cell Comp Physiol 39:191–211

    Article  CAS  Google Scholar 

  • Martens JR, O'Connell K, Tamkun M (2004) Targeting of ion channels to membrane microdomains: localization of KV channels to lipid rafts. Trends Pharmacol Sci 25:16–21

    Article  PubMed  CAS  Google Scholar 

  • Mazzanti M, Bustamante JO, Oberleithner H (2001) Electrical dimension of the nuclear envelope. Physiol Rev 81:1–19

    PubMed  CAS  Google Scholar 

  • McCaig CD, Rajnicek AM, Song B, Zhao M (2005) Controlling cell behavior electrically: current views and future potential. Physiol Rev 85:943–978

    Article  PubMed  Google Scholar 

  • McCaig CD, Song B, Rajnicek AM (2009) Electrical dimensions in cell science. J Cell Sci 122:4267–4276

    Article  PubMed  CAS  Google Scholar 

  • Meinhardt H (2000) Models for organizer and notochord formation. C R Acad Sci III 323:23–30

    Article  PubMed  CAS  Google Scholar 

  • Meinhardt H (2001) Organizer and axes formation as a self-organizing process. Int J Dev Biol 45:177–188

    PubMed  CAS  Google Scholar 

  • Mennerick S, Chisari M, Shu H-J, Taylor A, Vasek M, Eisenman LN, Zorumski CF (2010) Diverse voltage-sensitive dyes modulate GABAAReceptor function. J Neurosci 30:2871–2879

    Article  PubMed  CAS  Google Scholar 

  • Michard E, Alves F, Feijo JA (2009) The role of ion fluxes in polarized cell growth and morphogenesis: the pollen tube as an experimental paradigm. Int J Dev Biol 53:1609–1622

    Article  PubMed  CAS  Google Scholar 

  • Miki T, Iwanaga T, Nagashima K, Ihara Y, Seino S (2001) Roles of ATP-sensitive K+ channels in cell survival and differentiation in the endocrine pancreas. Diabetes 50 (Suppl 1):S48–S51

    Article  PubMed  CAS  Google Scholar 

  • Minc N, Chang F (2010) Electrical control of cell polarization in the fission yeast Schizosaccharomyces pombe. Curr Biol 20:710–716

    Article  PubMed  CAS  Google Scholar 

  • Misakian M, Sheppard AR, Krause D, Frazier ME, Miller DL (1993) Biological, physical, and electrical parameters for in vitro studies with ELF magnetic and electric fields: a primer. Bioelectromagnetics Suppl 2:1–73

    Article  Google Scholar 

  • Morimoto T, Sakamoto K, Sade H, Ohya S, Muraki K, Imaizumi Y (2007) Voltage-sensitive oxonol dyes are novel large-conductance Ca2+−activated K+ channel activators selective for beta1 and beta4 but not for beta2 subunits. Mol Pharmacol 71:1075–1088

    Article  PubMed  CAS  Google Scholar 

  • Morokuma J, Blackiston D, Adams DS, Seebohm G, Trimmer B, Levin M (2008a) Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells. Proc Natl Acad Sci USA 105:16608–16613

    Article  PubMed  CAS  Google Scholar 

  • Morokuma J, Blackiston D, Levin M (2008b) KCNQ1 and KCNE1 K+ channel components are involved in early left-right patterning in Xenopus laevis embryos. Cell Physiol Biochem 21:357–372

    Article  PubMed  CAS  Google Scholar 

  • Murata Y, Iwasaki H, Sasaki M, Inaba K, Okamura Y (2005) Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435:1239–1243

    Article  PubMed  CAS  Google Scholar 

  • Mutoh H, Perron A, Dimitrov D, Iwamoto Y, Akemann W, Chudakov DM, Knopfel T (2009) Spectrally-resolved response properties of the three most advanced FRET based fluorescent protein voltage probes. PLoS One 4:e4555

    Article  PubMed  CAS  Google Scholar 

  • Mutoh H, Perron A, Akemann W, Iwamoto Y, Knopfel T (2011) Optogenetic monitoring of membrane potentials. Exp Physiol 96:13–18

    Article  PubMed  Google Scholar 

  • Nagajski D, Guthrie S, Ford C, Warner A (1989) The correlation between patterns of dye transfer through gap junctions and future developmental fate in Xenopus. Development 105:747–752

    Google Scholar 

  • Nakamasu A, Takahashi G, Kanbe A, Kondo S (2009) Interactions between zebrafish pigment cells responsible for the generation of Turing patterns. Proc Natl Acad Sci USA 106:8429–8434

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi S, Okazawa M (2006) Membrane potential-regulated Ca2+ signalling in development and maturation of mammalian cerebellar granule cells. J Physiol (Lond) 575:389–395

    Article  CAS  Google Scholar 

  • Nicholson BJ (2003) Gap junctions—from cell to molecule. J Cell Sci 116:4479–4481

    Article  PubMed  CAS  Google Scholar 

  • Nogi T, Levin M (2005) Characterization of innexin gene expression and functional roles of gap-junctional communication in planarian regeneration. Dev Biol 287:314–335

    Article  PubMed  CAS  Google Scholar 

  • Novak B, Bentrup FW (1972) An electrophysiological study of regeneration in Acetabularia mediterranea. Planta 108:227–244

    Article  Google Scholar 

  • Novak B, Sirnoval C (1975) Inhibition of regeneration of Acetabularia mediterranea enucleated posterior stalk segments by electrical isolation. Plant Sci Lett 5:183–188

    Article  Google Scholar 

  • Novikov VV, Sheiman IM, Fesenko EE (2008) Effect of weak static and low-frequency alternating magnetic fields on the fission and regeneration of the planarian Dugesia (Girardia) tigrina. Bioelectromagnetics 29:387–393

    Article  PubMed  Google Scholar 

  • Nuccitelli R (1980) Vibrating probe—high spatial-resolution extracellular current measurement. Fed Proc 39:2129

    Google Scholar 

  • Nuccitelli R (1992) Endogenous ionic currents and DC electric-fields in multicellular animal-tissues. Bioelectromagnetics Suppl 1:147–157

    Article  PubMed  CAS  Google Scholar 

  • Nuccitelli R (1995) Endogenous electric fields measured in developing embryos. In: Blank M (ed) Electromagnetic fields. Biological interactions and mechanisms. Advances in chemistry, vol 250. ACS Publications, Washington, pp 109–124

    Chapter  Google Scholar 

  • Nuccitelli R (2003) A role for endogenous electric fields in wound healing. Curr Top Dev Biol 58:1–26

    Article  PubMed  Google Scholar 

  • Nuccitelli R, Robinson K, Jaffe L (1986) On electrical currents in development. Bioessays 5:292–294

    Article  PubMed  CAS  Google Scholar 

  • O'Connell KM, Tamkun MM (2005) Targeting of voltage-gated potassium channel isoforms to distinct cell surface microdomains. J Cell Sci 118:2155–2166

    Article  PubMed  CAS  Google Scholar 

  • Okamura Y, Dixon JE (2011) Voltage-sensing phosphatase: its molecular relationship with PTEN. Physiology (Bethesda) 26:6–13

    Article  CAS  Google Scholar 

  • Olivotto M, Arcangeli A, Carla M, Wanke E (1996) Electric fields at the plasma membrane level: a neglected element in the mechanisms of cell signalling. Bioessays 18:495–504

    Article  PubMed  CAS  Google Scholar 

  • Onkal R, Djamgoz MB (2009) Molecular pharmacology of voltage-gated sodium channel expression in metastatic disease: clinical potential of neonatal Nav1.5 in breast cancer. Eur J Pharmacol 625:206–219

    Article  PubMed  CAS  Google Scholar 

  • Oster GF (1988) Lateral inhibition models of developmental processes. Math Biosci 90:265–286

    Article  Google Scholar 

  • Oviedo NJ, Nicolas CL, Adams DS, Levin M (2008) Live imaging of planarian membrane potential using DiBAC4(3). Cold Spring Harb Protoc 2008:pdb.prot5055

    Article  Google Scholar 

  • Oviedo NJ, Morokuma J, Walentek P, Kema IP, Gu MB, Ahn JM, Hwang JS, Gojobori T, Levin M (2010) Long-range neural and gap junction protein-mediated cues control polarity during planarian regeneration. Dev Biol 339:188–199

    Article  PubMed  CAS  Google Scholar 

  • Ozkucur N, Epperlein HH, Funk RH (2010) Ion imaging during axolotl tail regeneration in vivo. Dev Dyn 239:2048–2057

    Article  PubMed  CAS  Google Scholar 

  • Ozkucur N, Perike S, Sharma P, Funk RH (2011) Persistent directional cell migration requires ion transport proteins as direction sensors and membrane potential differences in order to maintain directedness. BMC Cell Biol 12:4

    Article  PubMed  CAS  Google Scholar 

  • Pai VP, Aw S, Shomrat T, Lemire JM, Levin M (2012) Transmembrane voltage potential conrols embryonic eye patterning in Xenopus laevis. Development 139:313–323

    Article  PubMed  CAS  Google Scholar 

  • Paine PL, Pearson TW, Tluczek LJ, Horowitz SB (1981) Nuclear sodium and potassium. Nature 291:258–259

    Article  PubMed  CAS  Google Scholar 

  • Pan L, Borgens RB (2010) Perpendicular organization of sympathetic neurons within a required physiological voltage. Exp Neurol 222:161–164

    Article  PubMed  Google Scholar 

  • Pardo LA, Camino D del, Sanchez A, Alves F, Bruggemann A, Beckh S, Stuhmer W (1999) Oncogenic potential of EAG K(+) channels. EMBO J 18:5540–5547

    Article  PubMed  CAS  Google Scholar 

  • Paul SM, Palladino MJ, Beitel GJ (2007) A pump-independent function of the Na, K-ATPase is required for epithelial junction function and tracheal tube-size control. Development 134:147–155

    Article  PubMed  CAS  Google Scholar 

  • Pei L, Wiser O, Slavin A, Mu D, Powers S, Jan LY, Hoey T (2003) Oncogenic potential of TASK3 (Kcnk9) depends on K+ channel function. Proc Natl Acad Sci USA 100:7803–7807

    Article  PubMed  CAS  Google Scholar 

  • Perron A, Mutoh H, Akemann W, Gautam SG, Dimitrov D, Iwamoto Y, Knopfel T (2009a) Second and third generation voltage-sensitive fluorescent proteins for monitoring membrane potential. Front Mol Neurosci 2:5

    Article  PubMed  CAS  Google Scholar 

  • Perron A, Mutoh H, Launey T, Knopfel T (2009b) Red-shifted voltage-sensitive fluorescent proteins. Chem Biol 16:1268–1277

    Article  PubMed  CAS  Google Scholar 

  • Poo M, Robinson KR (1977) Electrophoresis of concanavalin A receptors along embryonic muscle cell membrane. Nature 265:602–605

    Article  PubMed  CAS  Google Scholar 

  • Poo MM, Poo WJ, Lam JW (1978) Lateral electrophoresis and diffusion of Concanavalin A receptors in the membrane of embryonic muscle cell. J Cell Biol 76:483–501

    Article  PubMed  CAS  Google Scholar 

  • Popp FA, Li KH, Gu Q (1992) Recent advances in biophoton research and its applications. World Scientific Publishing, Singapore

    Google Scholar 

  • Prat AG, Cantiello HF (1996) Nuclear ion channel activity is regulated by actin filaments. Am J Physiol 270:C1532–C1543

    PubMed  CAS  Google Scholar 

  • Prato FS, Robertson JA, Desjardins D, Hensel J, Thomas AW (2005) Daily repeated magnetic field shielding induces analgesia in CD-1 mice. Bioelectromagnetics 26:109–117

    Article  PubMed  Google Scholar 

  • Pu J, McCaig CD, Cao L, Zhao Z, Segall JE, Zhao M (2007) EGF receptor signalling is essential for electric-field-directed migration of breast cancer cells. J Cell Sci 120:3395–3403

    Article  PubMed  CAS  Google Scholar 

  • Pullar CE, Isseroff RR (2005) Cyclic AMP mediates keratinocyte directional migration in an electric field. J Cell Sci 118:2023–2034

    Article  PubMed  CAS  Google Scholar 

  • Pullar CE, Rizzo A, Isseroff RR (2006) Beta-adrenergic receptor antagonists accelerate skin wound healing: evidence for a catecholamine synthesis network in the epidermis. J Biol Chem 281:21225–21235

    Article  PubMed  CAS  Google Scholar 

  • Pullar CE, Zhao M, Song B, Pu J, Reid B, Ghoghawala S, McCaig C, Isseroff RR (2007) Beta-adrenergic receptor agonists delay while antagonists accelerate epithelial wound healing: evidence of an endogenous adrenergic network within the corneal epithelium. J Cell Physiol 211:261–272

    Article  PubMed  CAS  Google Scholar 

  • Purnick PE, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 10:410–422

    Article  PubMed  CAS  Google Scholar 

  • Rajnicek AM, Foubister LE, McCaig CD (2007) Prioritising guidance cues: directional migration induced by substratum contours and electrical gradients is controlled by a rho/cdc42 switch. Dev Biol 312:448–460

    Article  PubMed  CAS  Google Scholar 

  • Redmann K, Jenssen HL, Kohler HJ (1974) Experimental and functional changes in transmembrane potential and zeta potential of single cultured cells. Exp Cell Res 87:281–289

    Article  PubMed  CAS  Google Scholar 

  • Reid B, Graue-Hernandez EO, Mannis MJ, Zhao M (2011) Modulating endogenous electric currents in human corneal wounds—a novel approach of bioelectric stimulation without electrodes. Cornea 30:338–343

    Article  PubMed  Google Scholar 

  • Reid B, Nuccitelli R, Zhao M (2007) Non-invasive measurement of bioelectric currents with a vibrating probe. Nat Protoc 2:661–669

    Article  PubMed  CAS  Google Scholar 

  • Reid B, Song B, McCaig CD, Zhao M (2005) Wound healing in rat cornea: the role of electric currents. FASEB J 19:379–386

    Article  PubMed  CAS  Google Scholar 

  • Robinson KR (1989) Endogenous and applied electrical currents: their measurement and application. In: Borgens R, Robinson K, Vanable J, McGinnis M (eds) Electric fields in vertebrate repair. Liss, New York, pp 1–25

    Google Scholar 

  • Robinson K, Messerli M (1996) Electric embryos: the embryonic epithelium as a generator of developmental information. In: McCaig C (ed) Nerve growth and guidance. Portland Press, Portland, pp 131–141

    Google Scholar 

  • Robinson KR, Messerli MA (2003) Left/right, up/down: the role of endogenous electrical fields as directional signals in development, repair and invasion. Bioessays 25:759–766

    Article  PubMed  Google Scholar 

  • Rock JR, Futtner CR, Harfe BD (2008) The transmembrane protein TMEM16A is required for normal development of the murine trachea. Dev Biol 321:141–149

    Article  PubMed  CAS  Google Scholar 

  • Roepke TK, Purtell K, King EC, La Perle KM, Lerner DJ, Abbott GW (2010) Targeted deletion of Kcne2 causes gastritis cystica profunda and gastric neoplasia. PLoS One 5:e11451

    Article  PubMed  CAS  Google Scholar 

  • Rossi C, Foletti A, Magnani A, Lamponi S (2011) New perspectives in cell communication: bioelectromagnetic interactions. Semin Cancer Biol 21:207–214

    Article  PubMed  CAS  Google Scholar 

  • Rouzaire-Dubois B, Gerard V, Dubois JM (1993) Involvement of K+ channels in the quercetin-induced inhibition of neuroblastoma cell growth. Pflugers Arch 423:202–205

    Article  PubMed  CAS  Google Scholar 

  • Russo RE, Reali C, Radmilovich M, Fernandez A, Trujillo-Cenoz O (2008) Connexin 43 delimits functional domains of neurogenic precursors in the spinal cord. J Neurosci 28:3298–3309

    Article  PubMed  CAS  Google Scholar 

  • Sachdeva G, Kalyanasundaram K, Krishnan J, Chakravarthy VS (2010) Bistable dynamics of cardiac cell models coupled by dynamic gap junctions linked to cardiac memory. Biol Cybern 102:109–121

    Article  PubMed  Google Scholar 

  • Saito T, Schlegel R, Andresson T, Yuge L, Yamamoto M, Yamasaki H (1998) Induction of cell transformation by mutated 16 K vacuolar H+−ATPase (ductin) is accompanied by down-regulation of gap junctional intercellular communication and translocation of connexin 43 in NIH3T3 cells. Oncogene 17:1673–1680

    Article  PubMed  CAS  Google Scholar 

  • Sawai S, Maeda Y, Sawada Y (2000) Spontaneous symmetry breaking Turing-type pattern formation in a confined Dictyostelium cell mass. Phys Rev Lett 85:2212–2215

    Article  PubMed  CAS  Google Scholar 

  • Schiffmann Y (1991) An hypothesis: phosphorylation fields as the source of positional information and cell differentiation—(cAMP, ATP) as the universal morphogenetic Turing couple. Prog Biophys Mol Biol 56:79–105

    Article  PubMed  CAS  Google Scholar 

  • Schiffmann Y (2011) Turing-Child field underlies spatial periodicity in Drosophila and planarians. Prog Biophys Mol Biol 105:258–269

    Article  PubMed  CAS  Google Scholar 

  • Schultheis C, Liewald JF, Bamberg E, Nagel G, Gottschalk A (2011) Optogenetic long-term manipulation of behavior and animal development. PLoS One 6:e18766

    Article  PubMed  CAS  Google Scholar 

  • Schwab A (2001) Function and spatial distribution of ion channels and transporters in cell migration. Am J Physiol Renal Physiol 280:F739–F747

    PubMed  CAS  Google Scholar 

  • Schwab A, Gabriel K, Finsterwalder F, Folprecht G, Greger R, Kramer A, Oberleithner H (1995) Polarized ion transport during migration of transformed Madin-Darby canine kidney cells. Pflugers Arch 430:802–807

    Article  PubMed  CAS  Google Scholar 

  • Shapiro S, Borgens R, Pascuzzi R, Roos K, Groff M, Purvines S, Rodgers RB, Hagy S, Nelson P (2005) Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial. J Neurosurg Spine 2:3–10

    Article  PubMed  Google Scholar 

  • Shen B, Xiang Z, Miller B, Louie G, Wang W, Noel JP, Gage FH, Wang L (2011) Genetically encoding unnatural amino acids in neural stem cells and optically reporting voltage-sensitive domain changes in differentiated neurons. Stem Cells 29:1231-1240

    Article  PubMed  CAS  Google Scholar 

  • Shi R, Borgens RB (1995) Three-dimensional gradients of voltage during development of the nervous system as invisible coordinates for the establishment of embryonic pattern. Dev Dyn 202:101–114

    Article  PubMed  CAS  Google Scholar 

  • Silver RB (1996) Calcium, BOBs, QEDs, microdomains and a cellular decision: control of mitotic cell division in sand dollar blastomeres. Cell Calcium 20:161–179

    Article  PubMed  CAS  Google Scholar 

  • Slusarski DC, Pelegri F (2007) Calcium signaling in vertebrate embryonic patterning and morphogenesis. Dev Biol 307:1–13

    Article  PubMed  CAS  Google Scholar 

  • Smith PJS, Sanger RS, Messerli MA (2007) Principles, development and applications of self-referencing electrochemical microelectrodes to the determination of fluxes at cell membranes. In: Michael AC (ed) Methods and new frontiers in neuroscience. CRC Press, Boca Raton, pp 373–405

    Google Scholar 

  • Song B, Gu Y, Pu J, Reid B, Zhao Z, Zhao M (2007) Application of direct current electric fields to cells and tissues in vitro and modulation of wound electric field in vivo. Nat Protoc 2:1479–1489

    Article  PubMed  CAS  Google Scholar 

  • Spray DC, Harris AL, Bennett MV (1981) Gap junctional conductance is a simple and sensitive function of intracellular pH. Science 211:712–715

    Article  PubMed  CAS  Google Scholar 

  • Steinberg BE, Touret N, Vargas-Caballero M, Grinstein S (2007) In situ measurement of the electrical potential across the phagosomal membrane using FRET and its contribution to the proton-motive force. Proc Natl Acad Sci USA 104:9523–9528

    Article  PubMed  CAS  Google Scholar 

  • Stern C (1982) Experimental reversal of polarity in chick embryo epiblast sheets in vitro. Exp Cell Res 140:468–471

    Article  PubMed  CAS  Google Scholar 

  • Stern CD (1987) Control of epithelial polarity and induction in the early chick embryo. In: Wolff S, Berry S (eds) Mesenchymal-epithelial interactions in neural development. Springer, Berlin, pp 91–100

    Chapter  Google Scholar 

  • Stern CD (1991) The subembryonic fluid of the egg of the domestic fowl and its relationship to the early development of the embryo. In: Tullett SG (ed) Avian incubation. Butterworths, London, pp 81–90

    Google Scholar 

  • Stern C, MacKenzie D (1983) Sodium transport and the control of epiblast polarity in the early chick embryo. J Embryol Exp Morphol 77:73–98

    PubMed  CAS  Google Scholar 

  • Stillwell EF, Cone CM, Cone CD (1973) Stimulation of DNA synthesis in CNS neurones by sustained depolarisation. Nat New Biol 246:110–111

    Article  PubMed  CAS  Google Scholar 

  • Strilic B, Eglinger J, Krieg M, Zeeb M, Axnick J, Babal P, Muller DJ, Lammert E (2010) Electrostatic cell-surface repulsion initiates lumen formation in developing blood vessels. Curr Biol 20:2003–2009

    Article  PubMed  CAS  Google Scholar 

  • Stroh A, Tsai HC, Ping Wang L, Zhang F, Kressel J, Aravanis A, Santhanam N, Deisseroth K, Konnerth A, Schneider MB (2010) Tracking stem cell differentiation in the setting of automated optogenetic stimulation. Stem Cells (in press)

  • Stump RF, Robinson KR (1983) Xenopus neural crest cell migration in an applied electrical field. J Cell Biol 97:1226–1233

    Article  PubMed  CAS  Google Scholar 

  • Sundelacruz S, Levin M, Kaplan DL (2008) Membrane potential controls adipogenic and osteogenic differentiation of mesenchymal stem cells. PLoS One 3:e3737

    Article  PubMed  CAS  Google Scholar 

  • Sundelacruz S, Levin M, Kaplan DL (2009) Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev Rep 5:231–246

    Article  Google Scholar 

  • Szechynska-Hebda M, Kruk J, Gorecka M, Karpinska B, Karpinski S (2010) Evidence for light wavelength-specific photoelectrophysiological signaling and memory of excess light episodes in Arabidopsis. Plant Cell 22:2201–2218

    Article  PubMed  CAS  Google Scholar 

  • Tai G, Reid B, Cao L, Zhao M (2009) Electrotaxis and wound healing: experimental methods to study electric fields as a directional signal for cell migration. Methods Mol Biol 571:77–97

    Article  PubMed  CAS  Google Scholar 

  • Tantama M, Hung YP, Yellen G (2011) Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor. J Am Chem Soc 133:10034–10037

    Article  PubMed  CAS  Google Scholar 

  • Teng GQ, Zhao X, Lees-Miller JP, Quinn FR, Li P, Rancourt DE, London B, Cross JC, Duff HJ (2008) Homozygous missense N629D hERG (KCNH2) potassium channel mutation causes developmental defects in the right ventricle and its outflow tract and embryonic lethality. Circ Res 103:1483–1491

    Article  PubMed  CAS  Google Scholar 

  • Tofani S, Barone D, Cintorino M, Santi MM de, Ferrara A, Orlassino R, Ossola P, Peroglio F, Rolfo K, Ronchetto F (2001) Static and ELF magnetic fields induce tumor growth inhibition and apoptosis. Bioelectromagnetics 22:419–428

    Article  PubMed  CAS  Google Scholar 

  • Tomita H, Sugano E, Fukazawa Y, Isago H, Sugiyama Y, Hiroi T, Ishizuka T, Mushiake H, Kato M, Hirabayashi M, Shigemoto R, Yawo H, Tamai M (2009) Visual properties of transgenic rats harboring the channelrhodopsin-2 gene regulated by the thy-1.2 promoter. PLoS One 4:e7679

    Article  PubMed  CAS  Google Scholar 

  • Tseng AS, Beane WS, Lemire JM, Masi A, Levin M (2010) Induction of vertebrate regeneration by a transient sodium current. J Neurosci 30:13192–13200

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui H, Karasawa S, Okamura Y, Miyawaki A (2008a) Improving membrane voltage measurements using FRET with new fluorescent proteins. Nat Methods 5:683–685

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui H, Karasawa S, Okamura Y, Miyawaki A (2008b) Improving membrane voltage measurements using FRET with new fluorescent proteins. Nat Meth 5:683–685

    Article  CAS  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond Biol 237:37–72

    Article  Google Scholar 

  • Turner CH, Robling AG, Duncan RL, Burr DB (2002) Do bone cells behave like a neuronal network? Calcif Tissue Int 70:435–442

    Article  PubMed  CAS  Google Scholar 

  • Tyner KM, Kopelman R, Philbert MA (2007) "Nanosized voltmeter" enables cellular-wide electric field mapping. Biophys J 93:1163–1174

    Article  PubMed  CAS  Google Scholar 

  • Ubeda A, Trillo MA, Chacon L, Blanco MJ, Leal J (1994) Chick embryo development can be irreversibly altered by early exposure to weak extremely-low-frequency magnetic fields. Bioelectromagnetics 15:385–398

    Article  PubMed  CAS  Google Scholar 

  • Uzman JA, Patil S, Uzgare AR, Sater AK (1998) The role of intracellular alkalinization in the establishment of anterior neural fate in Xenopus. Dev Biol 193:10–20

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela SM, Mazzanti M, Tonini R, Qiu MR, Warton K, Musgrove EA, Campbell TJ, Breit SN (2000) The nuclear chloride ion channel NCC27 is involved in regulation of the cell cycle. J Physiol (Lond) 529:541–552

    Article  CAS  Google Scholar 

  • Vandenberg LN, Morrie RD, Adams DS (2011) V-ATPase-dependent ectodermal voltage and pH regionalization are required for craniofacial morphogenesis. Dev Dyn 240:1889–1904

    Article  PubMed  CAS  Google Scholar 

  • Vaughan TE, Weaver JC (2005) Molecular change signal-to-noise criteria for interpreting experiments involving exposure of biological systems to weakly interacting electromagnetic fields. Bioelectromagnetics 26:305–322

    Article  PubMed  CAS  Google Scholar 

  • Wainwright M (1998) Historical and recent evidence for the existence of mitogenetic radiation. Perspect Biol Med 41:565–571

    PubMed  CAS  Google Scholar 

  • Wallace R (2007) Neural membrane microdomains as computational systems: toward molecular modeling in the study of neural disease. Biosystems 87:20–30

    Article  PubMed  CAS  Google Scholar 

  • Walters BC (2010) Oscillating field stimulation in the treatment of spinal cord injury. PM R 2:S286–291

    Article  PubMed  Google Scholar 

  • Walters ZS, Haworth KE, Latinkic BV (2009) NKCC1 (SLC12a2) induces a secondary axis in Xenopus laevis embryos independently of its co-transporter function. J Physiol (Lond) 587:521–529

    Article  CAS  Google Scholar 

  • Wang ET, Zhao M (2010) Regulation of tissue repair and regeneration by electric fields. Chin J Traumatol 13:55–61

    PubMed  Google Scholar 

  • Wang L, Zhou P, Craig RW, Lu L (1999) Protection from cell death by mcl-1 is mediated by membrane hyperpolarization induced by K(+) channel activation. J Membr Biol 172:113–120

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Veruki ML, Bukoreshtliev NV, Hartveit E, Gerdes HH (2010) Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels. Proc Natl Acad Sci USA 107:17194–17199

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Iwashita M, Ishii M, Kurachi Y, Kawakami A, Kondo S, Okada N (2006) Spot pattern of leopard Danio is caused by mutation in the zebrafish connexin41.8 gene. EMBO Rep 7:893–897

    Article  PubMed  CAS  Google Scholar 

  • Weihua Z, Tsan R, Schroit AJ, Fidler IJ (2005) Apoptotic cells initiate endothelial cell sprouting via electrostatic signaling. Cancer Res 65:11529–11535

    Article  PubMed  CAS  Google Scholar 

  • Wolff C, Fuks B, Chatelain P (2003) Comparative study of membrane potential-sensitive fluorescent probes and their use in ion channel screening assays. J Biomol Screening 8:533–543

    Article  CAS  Google Scholar 

  • Wonderlin WF, Strobl JS (1996) Potassium channels, proliferation and G1 progression. J Membr Biol 154:91–107

    Article  PubMed  CAS  Google Scholar 

  • Woodruff R, Telfer W (1980) Electrophoresis of proteins in intercellular bridges. Nature 286:84–86

    Article  PubMed  CAS  Google Scholar 

  • Woodruff RI (2005) Calmodulin transit via gap junctions is reduced in the absence of an electric field. J Insect Physiol 51:843–852

    Article  PubMed  CAS  Google Scholar 

  • Wyart C, Del Bene F, Warp E, Scott EK, Trauner D, Baier H, Isacoff EY (2009) Optogenetic dissection of a behavioural module in the vertebrate spinal cord. Nature 461:407–410

    Article  PubMed  CAS  Google Scholar 

  • Yamashita M (2011) Fluctuations in nuclear envelope's potential mediate synchronization of early neural activity. Biochem Biophys Res Commun 406:107–111

    Article  PubMed  CAS  Google Scholar 

  • Yan X, Han J, Zhang Z, Wang J, Cheng Q, Gao K, Ni Y, Wang Y (2009) Lung cancer A549 cells migrate directionally in DC electric fields with polarized and activated EGFRs. Bioelectromagnetics 30:29–35

    Article  PubMed  Google Scholar 

  • Yang S, Li WH (2009) Assaying dynamic cell-cell junctional communication using noninvasive and quantitative fluorescence imaging techniques: LAMP and infrared-LAMP. Nat Protoc 4:94–101

    Article  PubMed  CAS  Google Scholar 

  • Yao L, Shanley L, McCaig C, Zhao M (2008) Small applied electric fields guide migration of hippocampal neurons. J Cell Physiol 216:527–535

    Article  PubMed  CAS  Google Scholar 

  • Yao L, Pandit A, Yao S, McCaig CD (2011) Electric field-guided neuron migration: a novel approach in neurogenesis. Tissue Eng Part B Rev 17:143–153

    Article  PubMed  Google Scholar 

  • Yasuda I (1974) Mechanical and electrical callus. Ann N Y Acad Sci 238:457–465

    Article  PubMed  CAS  Google Scholar 

  • Yasuda I (1977) Electrical callus and callus formation by electret. Clin Orthop Relat Res 124:53-66

    PubMed  Google Scholar 

  • Yoshida R (2010) Self-oscillating gels driven by the Belousov-Zhabotinsky reaction as novel smart materials. Adv Mater 22:3463–3483

    Article  PubMed  CAS  Google Scholar 

  • Yu K, Ruan DY, Ge SY (2002) Three electrophysiological phenotypes of cultured human umbilical vein endothelial cells. Gen Physiol Biophys 21:315–326

    PubMed  CAS  Google Scholar 

  • Yun Z, Zhengtao D, Jiachang Y, Fangqiong T, Qun W (2007) Using cadmium telluride quantum dots as a proton flux sensor and applying to detect H9 avian influenza virus. Anal Biochem 364:122–127

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Kone BC (2002) NF-kappaB inhibits transcription of the H(+)-K(+)-ATPase alpha(2)-subunit gene: role of histone deacetylases. Am J Physiol Renal Physiol 283:F904–F911

    PubMed  Google Scholar 

  • Zhang Y, Levin M (2009) Particle tracking model of electrophoretic morphogen movement reveals stochastic dynamics of embryonic gradient. Dev Dyn 238:1923–1935

    Article  PubMed  Google Scholar 

  • Zhao M (2009) Electrical fields in wound healing—an overriding signal that directs cell migration. Semin Cell Dev Biol 20:674–682

    Article  PubMed  CAS  Google Scholar 

  • Zhao M, McCaig CD, Agius-Fernandez A, Forrester JV, Araki-Sasaki K (1997) Human corneal epithelial cells reorient and migrate cathodally in a small applied electric field. Curr Eye Res 16:973–984

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the Levin laboratory and numerous members of the bioelectricity, physiology and neurobiology communities for many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Levin.

Additional information

M.L. is grateful for support from the NIH (EY018168, AR061988, GM078484, AR055993), the G. Harold and Leila Y. Mathers Charitable Foundation and the Telemedicine and Advanced Technology Research Center (TATRC) at the U.S. Army Medical Research and Materiel Command (USAMRMC) through award W81XWH-10-2-0058. D.S.A. gratefully acknowledges NIH K22-DE016633.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, D.S., Levin, M. Endogenous voltage gradients as mediators of cell-cell communication: strategies for investigating bioelectrical signals during pattern formation. Cell Tissue Res 352, 95–122 (2013). https://doi.org/10.1007/s00441-012-1329-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1329-4

Keywords

Navigation