Skip to main content

Advertisement

Log in

Ultrasensitive electrochemiluminescent immunoassay for morphine using a gold electrode modified with CdS quantum dots, polyamidoamine, and gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a novel electrochemiluminescent (ECL) immunoassay for the ultrasensitive determination of morphine by making use of a gold electrode which was modified with a nanocomposite film containing self-assembled polyamidoamine (PAMAM) CdS quantum dots and electrodeposited gold nanoparticles (Au-NPs). The highly uniform and well-dispersed quantum dots were capped with PAMAM dendrimers. Due to the synergistic effect of the modified quantum dots and the electrodeposited Au-NPs, the ECL response is dramatically enhanced. Under optimal experimental conditions, the immunoreaction between morphine and anti-morphine antibody resulted in a decrease of the ECL signal because of steric hindrance. The calibration plot is linear in the morphine concentration range from 0.2 to 180 ng•mL−1, with a detection limit as low as 67 pg•mL−1. The sensor was successfully applied to the determination of morphine in blood plasma. This kind of assay is expected to pave new avenues in label-free drug assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jordan PH, Hart JP (1991) Voltammetric behavior of morphine at a glassy carbon electrode and its determination in human serum by liquid chromatography with electrochemical detection under basic conditions. Analyst 116:991–996

    Article  CAS  Google Scholar 

  2. Ghazi-Khansari M, Zendehdel R, Pirali-Hamedani M, Amini M (2006) Determination of morphine in the plasma of addicts in using Zeolite Y extraction following high-performance liquid chromatography. Clin Chim Acta 364:235–238

    Article  CAS  Google Scholar 

  3. Blahova E, Brandsteterova E, Netriova J (2002) Symmetry shield and XTerra reversed phase columns in HPLC determination of morphine and its metabolites. Microchim Acta 140:247–253

    Article  CAS  Google Scholar 

  4. Mabuchi M, Takatsuka S, Matsuoka M, Tagawa K (2004) Determination of morphine, morphine-3-glucuronide and morphine-6-glucuronide in monkey and dog plasma by high-performance liquid chromatography–electrospray ionization tandem mass spectrometry. J Pharm Biomed Anal 35:563–573

    Article  CAS  Google Scholar 

  5. Macchia M, Manetto G, Mori C, Papi C, Pietr ND, Salott V, Bortolotti F, Tagliaro F (2001) Use of β-cyclodextrin in the capillary zone electrophoretic separation of the components of clandestine heroin preparations. J Chromatogr A 924:499–506

    Article  CAS  Google Scholar 

  6. Barnett NW, Lewis SW, Tucker DJ (1996) Determination of morphine in process streams by sequential injection analysis with chemiluminescence detection Fresenius’. J Anal Chem 355:591–595

    CAS  Google Scholar 

  7. Lewis SW, Francis PS, Lim KF, Jenkins GE, Wang XD (2000) Pulsed flow chemistry: a new approach to solution handling for flow analysis coupled with chemiluminescence detection. Analyst 125:1869–1874

    Article  CAS  Google Scholar 

  8. Moros J, Galipienso N, Vilches R, Garrigues S, Guardia M (2008) Nondestructive direct determination of heroin in seized illicit street drugs by diffuse reflectance near-infrared spectroscopy. Anal Chem 80:7257–7265

    Article  CAS  Google Scholar 

  9. Qi XH, Mi JQ, Zhang XX, Chang WB (2005) Electrochemical studies on the interaction of morphine and its analogs with its antibody. Electrochem Commun 7:227–232

    Article  CAS  Google Scholar 

  10. Sakai G, Ogata K, Uda T, Miura N, Yamazoe N (1998) A surface plasmon resonance based immune sensor for highly sensitive detection of morphine. Sens Actuators B 49:5–12

    Article  CAS  Google Scholar 

  11. Ensafi AA, Rezaei B, Krimi-Maleh H (2011) An ionic liquid-type multiwall carbon nanotubes paste electrode for electrochemical investigation and determination of morphine. Ionics 17:659–668

    Article  CAS  Google Scholar 

  12. Ho KC, Chen CY, Hsu HC, Chen LC, Shiesh SC, Lin XZ (2004) Amperometric detection of morphine at a Prussian blue-modified indium tin oxide electrode. Biosens Bioelectron 20:3–8

    Article  CAS  Google Scholar 

  13. Li F, Song JX, Shan CS, Gao DM, Xu XY, Niu L (2010) Electrochemical determination of morphine at ordered mesoporous carbon modified glassy carbon electrode. Biosens Bioelectron 25:1408–1413

    Article  CAS  Google Scholar 

  14. Zhao YR, Wu Y, Zhang Y, Chen ZG, Cao X, Di JW, Yang JP (2009) Electrocatalytic behavior and amperometric detection of morphine on ITO electrode modified with directly electrodeposited gold nanoparticles. Electroanalysis 21:939–943

    Article  CAS  Google Scholar 

  15. Niazi A, Yazdanipour A (2008) Determination of trace amounts of morphine in human plasma by anodic adsorptive stripping differential pulse voltammetry. Chin Chem Lett 19:465–468

    Article  CAS  Google Scholar 

  16. Cheng YF, Yuan R, Chai YQ, Niu H, Cao YL, Liu HJ, Bai LJ, Yuan YL (2012) Highly sensitive luminol electrochemiluminescence immunosensor based on ZnO nanoparticles and glucose oxidase decorated graphene for cancer biomarker detection. Anal Chim Acta 745:137–142

    Article  CAS  Google Scholar 

  17. Guo ZY, Hao TT, Duan J, Wang S, Wei DY (2012) Electrochemiluminescence immunosensor based on grapheme-CdS quantum dots-agarose composite for the ultrasensitive detection of alpha fetoprotein. Talanta 89:27–32

    Article  CAS  Google Scholar 

  18. Yao W, Wang L, Wang HY, Zhang XL, Li L (2009) Electrochemiluminescent sensor for the detection of DNA hybridization using stem-loop structure DNA as capture probes. Microchim Acta 165:407–413

    Article  CAS  Google Scholar 

  19. Jie GF, Li LL, Chen C, Xuan J, Zhu JJ (2009) Enhanced electrochemiluminescence of CdSe quantum dots composited with CNTs and PDDA for sensitive immunoassay. Biosens Bioelectron 24:3352–3358

    Article  CAS  Google Scholar 

  20. Mao L, Yuan R, Chai YQ, Zhuo Y, Yang X (2010) A new electrochemiluminescence immunosensor based on Ru(bpy)3 2+ - doped TiO2 nanoparticles labeling for ultrasensitive detection of human chorionic gonadotrophin. Sens Actuators B 149:226–232

    Article  CAS  Google Scholar 

  21. Zhang J, Chen PP, Wu XY, Chen JH, Xu LJ, Chen GN, Fu FF (2011) A signal-on electrochemiluminescence aptamer biosensor for the detection of ultratrace thrombin based on junction-probe. Biosens Bioelectron 26:2645–2650

    Article  CAS  Google Scholar 

  22. Bao L, Sun LF, Zhang ZL, Jiang P, Wise FW, Abruna HD, Pang DW (2011) Energylevel-related response of cathodic electrogenerated chemiluminescence of self-assembled CdSe/ZnS quantum dot films. Phys Chem C 115:18822–18828

    Article  CAS  Google Scholar 

  23. Chu HH, Yan JL, Tu YF (2011) Electrochemiluminescent detection of the hybridization of oligonucleotides using an electrode modified with nanocomposite of carbon nanotubes and gold nanoparticles. Microchim Acta 175:209–216

    Article  CAS  Google Scholar 

  24. Zheng RJ, Fang YM, Qin SF, Song J, Wu AH, Sun JJ (2011) A dissolved oxygen sensor based on hot electron induced cathodic electrochemiluminescence at a disposable CdS modified screen-printed carbon electrode. Sens Actuators B 157:488–493

    Article  CAS  Google Scholar 

  25. Zou GZ, Ju HX (2004) Electrogenerated chemiluminescence from a CdSe nanocrystal film and its sensing application in aqueous solution. Anal Chem 76:6871–6876

    Article  CAS  Google Scholar 

  26. Wang J, Shan Y, Zhao WW, Xu JJ, Chen HY (2011) Gold nanoparticle enhanced electrochemiluminescence of CdS thin films for ultrasensitive thrombin detection. Anal Chem 83:4004–4011

    Article  CAS  Google Scholar 

  27. Jie GF, Liu B, Pan HC, Zhu JJ, Chen HY (2007) CdS nanocrystal-based electrochemiluminescence biosensor for the detection of low-density lipoprotein by increasing sensitivity with gold nanoparticle amplification. Anal Chem 79:5574–5581

    Article  CAS  Google Scholar 

  28. Shan Y, Xu JJ, Chen HY (2009) Distance-dependent quenching and enhancing of electrochemiluminescence from a CdS:Mn nanocrystal film by Au nanoparticles for highly sensitive detection of DNA. Chem Commun 8:905–907

    Article  Google Scholar 

  29. Shan Y, Xu JJ, Chen HY (2010) Opto–magnetic interaction between electrochemiluminescent CdS:Mn film and Fe3O4 nanoparticles and its application to immunosensing. Chem Commun 46:4187–4189

    Article  CAS  Google Scholar 

  30. Lu C, Wang XF, Xu JJ, Chen HY (2008) Electrochemical modulation of electrogenerated chemiluminescence of CdS nano-composite. Electrochem Commun 10:1530–1532

    Article  CAS  Google Scholar 

  31. Sun FR, Chen FF, Fei WJ, Sun L, Wu Y (2012) A novel strategy for constructing electrochemiluminescence sensor based on CdS-polyamidoamine incorporating electrodeposited gold nanoparticle film and its application. Sens Actuators B 166–167:701–707

    Google Scholar 

  32. Jin YJ, Luo YJ, Li GP, Wang J, Yang RQ, Lu WT (2008) Application of photoluminescent CdS/PAMAM nanocomposites in fingerprint detection. Forensic Sci Int 179:34–34

    Article  CAS  Google Scholar 

  33. Wang Y, Deng JJ, Di JW, Tu YF (2009) Electrodeposition of large size gold nanoparticles on indium tin oxide glass and application as refractive index sensor. Electrochem Commun 11:1034–1037

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21075086, 21075087), Natural Science Foundation of Jiangsu Province (BK2011273), the Project of Scientific and Technologic Infrastructure of Suzhou (SZS201207), and the Open Research Project of the Battery Technology Innovation Center for Public Services of Jiangsu Province (HDP201206).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianping Yang or Ying Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 269 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fei, W., Chen, F., Sun, L. et al. Ultrasensitive electrochemiluminescent immunoassay for morphine using a gold electrode modified with CdS quantum dots, polyamidoamine, and gold nanoparticles. Microchim Acta 181, 419–425 (2014). https://doi.org/10.1007/s00604-013-1130-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1130-4

Keywords