Skip to main content
Log in

Cysteine S-conjugate β-lyases: important roles in the metabolism of naturally occurring sulfur and selenium-containing compounds, xenobiotics and anticancer agents

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Cysteine S-conjugate β-lyases are pyridoxal 5′-phosphate-containing enzymes that catalyze β-elimination reactions with cysteine S-conjugates that possess a good leaving group in the β-position. The end products are aminoacrylate and a sulfur-containing fragment. The aminoacrylate tautomerizes and hydrolyzes to pyruvate and ammonia. The mammalian cysteine S-conjugate β-lyases thus far identified are enzymes involved in amino acid metabolism that catalyze β-lyase reactions as non-physiological side reactions. Most are aminotransferases. In some cases the lyase is inactivated by reaction products. The cysteine S-conjugate β-lyases are of much interest to toxicologists because they play an important key role in the bioactivation (toxication) of halogenated alkenes, some of which are produced on an industrial scale and are environmental contaminants. The cysteine S-conjugate β-lyases have been reviewed in this journal previously (Cooper and Pinto in Amino Acids 30:1–15, 2006). Here, we focus on more recent findings regarding: (1) the identification of enzymes associated with high-M r cysteine S-conjugate β-lyases in the cytosolic and mitochondrial fractions of rat liver and kidney; (2) the mechanism of syncatalytic inactivation of rat liver mitochondrial aspartate aminotransferase by the nephrotoxic β-lyase substrate S-(1,1,2,2-tetrafluoroethyl)-l-cysteine (the cysteine S-conjugate of tetrafluoroethylene); (3) toxicant channeling of reactive fragments from the active site of mitochondrial aspartate aminotransferase to susceptible proteins in the mitochondria; (4) the involvement of cysteine S-conjugate β-lyases in the metabolism/bioactivation of drugs and natural products; and (5) the role of cysteine S-conjugate β-lyases in the metabolism of selenocysteine Se-conjugates. This review emphasizes the fact that the cysteine S-conjugate β-lyases are biologically more important than hitherto appreciated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AlaAT:

Alanine aminotransferase

AGAT II:

Alanine-glyoxylate aminotransferase isoenzyme II

BCATc :

Cytosolic branched-chain aminotransferase

BCATm :

Mitochondrial branched-chain aminotransferase

BCDHC:

Branched-chain α-keto acid dehydrogenase complex

BTC:

S-(2-Benzothiazolyl)-l-cysteine

cAAT:

Cytosolic aspartate aminotransferase

DCVC:

S-(1,2-Dichlorovinyl)-l-cysteine

DFTAL:

Difluorothioamidyl-lysine

EDAG:

γ-Glutamyldehydroalanylglycine

ESI-MS:

Electrospray ionization-mass spectrometry

GSH:

Glutathione

GST:

Glutathione S-transferase

GTK:

Glutamine transaminase K

HSP60:

Heat shock protein 60 kDa

HSP70i :

Heat shock protein 70 kDa (inducible isoform)

Hsc70:

Cytosolic HSP70

KAT I:

Kynurenine aminotransferase isoenzyme I

KGDHC:

α-Ketoglutarate dehydrogenase complex

mAAT:

Mitochondrial aspartate aminotransferase

mitACON:

Mitochondrial aconitase

mitHSP70:

Heat shock protein 70 kDa (mitochondrial isoform)

mitGTK:

Mitochondrial GTK

pmAAT:

Precursor to mAAT

PDHC:

Pyruvate dehydrogenase complex

PLP:

Pyridoxal 5′-phosphate

PMP:

Pyridoxamine 5′-phosphate

SAC:

S-Allyl-l-cysteine

SAMC:

S-Allylmercapto-l-cysteine

TCA cycle:

Tricarboxylic acid cycle

TFA:

Trifluoroacetic acid

TFEC:

S-(1,1,2,2-Tetrafluoroethyl)-l-cysteine

THT:

Tetrahydrothiophene

THT-A:

β-(S-Tetrahydrothiophenium)-l-alanine

References

  • Abraham DG, Cooper AJL (1991) Glutamine transaminase K and cysteine S-conjugate β-lyase activity stains. Anal Biochem 197:421–427

    Article  PubMed  CAS  Google Scholar 

  • Abraham DG, Cooper AJL (1996) Cloning and expression of a rat kidney cytosolic glutamine transaminase K that has strong sequence homology to kynurenine-pyruvate aminotransferase. Arch Biochem Biophys 335:311–320

    Article  PubMed  CAS  Google Scholar 

  • Abraham DG, Patel PP, Cooper AJL (1995a) Isolation from rat kidney of a high molecular weight cysteine S-conjugate β-lyase with activity toward leukotriene E4. J Biol Chem 270:180–188

    Article  PubMed  CAS  Google Scholar 

  • Abraham DG, Thomas RJ, Cooper AJL (1995b) Glutamine transaminase K is not a major cysteine S-conjugate β-lyase of rat kidney mitochondria: Evidence that a high-molecular-weight enzyme fulfills this role. Mol Pharmacol 48:855–860

    PubMed  CAS  Google Scholar 

  • Adams B, Lowpetch K, Thorndycroft F, Whyte SM, Young DW (2005) Stereochemistry of reactions of the inhibitor/substrates l- and d-chloroalanine with β-mercaptoethanol catalysed by l-aspartate aminotransferase and D-amino acid aminotransferase respectively. Org Biomol Med 3:3357–3364

    Article  CAS  Google Scholar 

  • Adcock HJ, Brophy PM, Teesdale-Spittle PH, Bucknberry LD (1999) Cysteine conjugate β-lyase in three species of parasitic helminth. Int J Parasitol 29:543–548

    Article  PubMed  CAS  Google Scholar 

  • Adcock HJ, Brophy PM, Teesdale-Spittle PH, Bucknberry LD (2000) Purification and characterisation of a novel cysteine conjugate β-lyase from the tapeworm Moniezia expansa. Int J Parasitol 30:56–71

    Article  Google Scholar 

  • Amato I (2009) You smell. Chem Eng News 87:50–54

    Article  Google Scholar 

  • Anders MW (2004) Glutathione-dependent bioactivation of haloalkanes and haloalkenes. Drug Metab Rev 36:583–594

    Article  PubMed  CAS  Google Scholar 

  • Anders MW (2008) Chemical toxicology of reactive intermediates formed by the glutathione-dependent bioactivation of halogen-containing compounds. Chem Res Toxicol 21:145–159

    Article  PubMed  Google Scholar 

  • Anders MW, Lash L, Dekant W, Elfarra AA, Dohn DR (1988) Biosynthesis and biotransformation of glutathione S-conjugates to toxic metabolites. Crit Rev Toxicol 18:311–341

    Article  PubMed  CAS  Google Scholar 

  • Anderson PM, Schultze MO (1965) Cleavage of S-(1, 2-dichlorovinyl)-l-cysteine by an enzyme of bovine origin. Arch Biochem Biophys 111:593–602

    Article  PubMed  CAS  Google Scholar 

  • Andreadou I, Menge WMPB, Commandeur JNM, Worthington EA, Vermeulen NPE (1996a) Synthesis of novel Se-substituted selenocysteine derivatives as potential kidney selective prodrugs of biologically active selenol compounds: evaluation of kinetics of β-elimination reactions in rat renal cytosol. J Med Chem 39:2040–2046

    Article  PubMed  CAS  Google Scholar 

  • Andreadou I, van de Water B, Commandeur JNM, Nagelkerke FJ, Vermeulen NPE (1996b) Comparative cytotoxicity of 14 novel selenocysteine Se-conjugates in rat renal proximal tubular cells. Toxicol Appl Pharmacol 141:278–287

    PubMed  CAS  Google Scholar 

  • Artigues A, Iriarte A, Martinez-Carrion M (2002) Binding to chaperones allows import of a purified mitochondrial precursor into mitochondria. J Biol Chem 277:25047–25055

    Article  PubMed  CAS  Google Scholar 

  • Artigues A, Iriarte A, Martinez-Carrion M (2006) Identification of Hsc70 binding sites in mitochondrial aspartate aminotransferase. Arch Biochem Biophys 450:30–38

    Article  PubMed  CAS  Google Scholar 

  • Bakke JE, Bergman ÅL, Larsen GL (1982) Metabolism of 2, 4’, 5-trichlorobiphenyl by the mercapturic acid pathway. Science 217:645–647

    Article  PubMed  CAS  Google Scholar 

  • Bernström K, Larsen GL, Hammerström S (1989) Metabolism of leukotriene E4 to 5-hydroxy-6-mercapto-7, 9-trans-11, 14-cis-eicosatetraenoic acid by microfloral cysteine conjugate β-lyase and rat cecum contents. Arch Biochem Biophys 275:531–539

    Article  PubMed  Google Scholar 

  • Bruschi SA, West KA, Crabb JW, Gupta RS, Stevens JL (1993) Mitochondrial HSP60 (P1 protein) and HSP70-like protein (mortalin) are major targets for modification during S-(1, 1, 2, 2-tetrafluoroethyl)-l-cysteine-induced toxicity. J Biol Chem 268:23157–23161

    PubMed  CAS  Google Scholar 

  • Bruschi SA, Crabb JW, Stevens JL (1994) The E3 subunit of 2-oxoglutarate, branched-chain α-keto acid, and malate dehydrogenase are adducted during nephrotoxic cysteine-conjugate injury. Toxicologist 14:428 (Abstract)

    Google Scholar 

  • Bruschi SA, Lindsay JG, Crabb JW (1998) Mitochondrial stress protein recognition of inactivated dehydrogenases during mammalian cell death. Proc Natl Acad Sci USA 95:13413–13418

    Article  PubMed  CAS  Google Scholar 

  • Cavallini D, Federici G, Bossa F, Granata F (1973) The protective effect of thiosulfate upon the inactivation of aspartate aminotransferase by aminoacrylic-acid-producing substrates. Eur J Biochem 39:301–304

    Article  PubMed  CAS  Google Scholar 

  • Chasseaud LF (1976) Conjugation with glutathione and mercapturic acid excretion. In: Arias IM, Jakoby WB (eds) Glutathione: metabolism and function. Raven Press, New York, pp 77–114

    Google Scholar 

  • Chatfield DH, Hunter WH (1973) The metabolism of acetamidothiazoles in the rat. 2-Acetamido-4-chloromethylthiazole. Biochem J 134:879–884

    PubMed  CAS  Google Scholar 

  • Clausen T, Huber R, Messerschmidt A, Pohlenz HD, Laber B (1997) Slow-binding inhibition of Escherichia coli cystathionine beta-lyase by L-aminoethoxyvinylglycine: a kinetic and X-ray study. Biochemistry 36:12633–12643

    Article  PubMed  CAS  Google Scholar 

  • Colucci DF, Buyske DA (1965) The biotransformation of a sulfonamide to a mercaptan and to mercapturic acid and glucuronide conjugates. Biochem Pharmacol 14:457–466

    Article  PubMed  CAS  Google Scholar 

  • Commandeur JNM, Andreadou I, Rooseboom M, Out M, de Leur LJ, Groot E, Vermeulen NPE (2000) Bioactivation of selenocysteine Se-conjugates by a highly purified rat renal cysteine conjugate β-lyase/glutamine transaminase K. J Pharmacol Exp Ther 294:753–761

    PubMed  CAS  Google Scholar 

  • Commandeur JNM, Rooseboom M, Vermeulen NPE (2001) Chemistry and biological activity of novel selenium-containing compounds. Adv Exp Med Biol 500:105–112

    PubMed  CAS  Google Scholar 

  • Cooper AJL, Hanigan MH (2010) Enzymes involved in processing of glutathione conjugates. In: McQueen CA (series ed), Guengerich FP (volume ed), Comprehensive toxicology, vol 4, 2nd edn. Biotransformations. Elsevier Press, Oxford (in press)

  • Cooper AJL, Pinto JT (2005) Aminotransferase, L-amino acid oxidase and β-lyase reactions involving L-cysteine S-conjugates found in allium extracts. Relevance to biological activity? Biochem Pharmacol 69:209–220

    Article  PubMed  CAS  Google Scholar 

  • Cooper AJL, Pinto JT (2006) Cysteine S-conjugate β-lyases. Amino Acids 30:1–15

    Article  PubMed  CAS  Google Scholar 

  • Cooper AJL, Pinto JT (2008) Role of cysteine S-conjugate β-lyases in the bioactivation of renal toxicants. In: Elfarra AA (ed) Biotechnology: pharmaceutical aspects. Advances in bioactivation research. Springer, New York, pp 323–346

    Google Scholar 

  • Cooper AJL, Wang J, Gartner CA, Bruschi SA (2001) Co-purification of mitochondrial HSP70 and mature protein disulfide isomerase with a functional rat kidney high-M r cysteine S-conjugate β-lyase. Biochem Pharmacol 62:1345–1353

    Article  PubMed  CAS  Google Scholar 

  • Cooper AJL, Bruschi SA, Anders MW (2002a) Toxic, halogenated cysteine S-conjugates and targeting of mitochondrial enzymes of energy metabolism. Biochem Pharmacol 64:553–564

    Article  PubMed  CAS  Google Scholar 

  • Cooper AJL, Bruschi SA, Iriarte A, Martinez-Carrion M (2002b) Mitochondrial aspartate aminotransferase catalyses cysteine S-conjugate β-lyase reactions. Biochem J 368:253–261

    Article  PubMed  CAS  Google Scholar 

  • Cooper AJL, Bruschi SA, Conway M, Hutson SM (2003) Human mitochondrial and cytosolic branched-chain aminotransferases are cysteine S-conjugate β-lyases, but turnover leads to inactivation. Biochem Pharmacol 65:181–192

    Article  PubMed  CAS  Google Scholar 

  • Cooper AJL, Pinto JT, Krasnikov BF, Niatsetskaya ZV, Han Q, Li J, Vauzour D, Spencer JPE (2008a) Substrate specificity of human glutamine transaminase K as an aminotransferase and as a cysteine S-conjugate β-lyase. Arch Biochem Biophys 474:72–81

    Article  PubMed  CAS  Google Scholar 

  • Cooper AJL, Younis IR, Niatsetskaya ZV, Krasnikov BF, Pinto JT, Petros WP, Callery PS (2008b) Metabolism of the cysteine S-conjugate of busulfan involves a β-lyase reaction. Drug Metab Dispos 36:1546–1552

    Article  PubMed  CAS  Google Scholar 

  • Czerwinski M, Gibbs JP, Slattery JT (1996) Busulfan conjugation by glutathione S-transferases α, μ, and π. Drug Metab Dispos 24:1015–1019

    PubMed  CAS  Google Scholar 

  • Dekant W (2003) Biosynthesis of toxic glutathione conjugates from halogenated alkenes. Toxicol Lett 144:49–54

    Article  PubMed  CAS  Google Scholar 

  • Dekant W, Vamvakas S, Anders MW (1994) Formation and fate of nephrotoxic and cytotoxic glutathione S-conjugates: Cysteine conjugate β-lyase pathway. Adv Pharmacol 27:115–162

    Article  PubMed  CAS  Google Scholar 

  • Dong Y, Zhang H, Hawthorn L, Ganther HE, Ip C (2003) Delineation of the molecular basis for selenium-induced growth arrest in human prostate cancer cells by oligonucleotide array. Cancer Res 63:52–59

    PubMed  CAS  Google Scholar 

  • Dowd CA, Sheehan D (1999) Variable expression of glutathione S-transferase isoenzymes in the fungus, Mucor circinelloides. FEMS Microbiol Lett 170:13–17

    Article  PubMed  CAS  Google Scholar 

  • Elfarra AA, Hwang IY (1990) In vivo metabolites of S-(2-benzothiazolyl)-l-cysteine as markers of in vivo cysteine conjugate β-lyase and thiol glucuronosyl transferase activities. Drug Metab Dispos 18:917–922

    PubMed  CAS  Google Scholar 

  • Elfarra AA, Hwang IY (1993) Targeting of 6-mercaptopurine to the kidneys. Metabolism and kidney-selectivity of S-(6-purinyl)-l-cysteine analogs in rats. Drug Metab Dispos 21:841–845

    PubMed  CAS  Google Scholar 

  • Elfarra AA, Duescher RJ, Hwang IY, Sicuri AR, Nelson JA (1995) Targeting 6-thioguanine to the kidney with S-(guanin-6-yl)-l-cysteine. J Pharmacol Exp Ther 274:1298–1304

    PubMed  CAS  Google Scholar 

  • Emter R, Natsch A (2008) The sequential action of a dipeptidase and a β-lyase is required for the release of the human body odorant 3-methyl-3-sulfanylhexan-1-ol from a secreted Cys-Gly-(S) conjugate by Corynebacteria. J Biol Chem 25:20645–20652

    Article  CAS  Google Scholar 

  • Eng JK, Fischer B, Grossmann J, Maccoss MJ (2008) A fast SEQUEST cross correlation algorithm. J Proteome Res 7:4598–4602

    Article  PubMed  CAS  Google Scholar 

  • Escher S, Niclass Y, van de Waal M, Starkenmann C (2006) Combinatorial synthesis by nature: volatile organic sulfur-containing constituents of Ruta chalepensis L. Chem Biodivers 3:943–957

    Article  PubMed  CAS  Google Scholar 

  • Fisher MB, Hayden PJ, Bruschi SA, Dulik DM, Yang Y, Ward AJ, Stevens JL (1993) Formation, characterization, and immunoreactivity of lysine thioamide adducts from fluorinated nephrotoxic cysteine conjugates in vitro and in vivo. Chem Res Toxicol 6:223–230

    Article  PubMed  CAS  Google Scholar 

  • Gibbs JP, Czerwinski M, Slattery JT (1996) Busulfan-glutathione conjugation catalyzed by human liver cytosolic glutathione S-transferases. Cancer Res 56:3678–3681

    PubMed  CAS  Google Scholar 

  • Gundimeda U, Schiffman JE, Chhabra D, Wong J, Wu A, Gopalakrishna R (2008) Locally generated methylseleninic acid induces specific inactivation of protein kinase C isoenzymes: relevance to selenium-induced apoptosis in prostate cancer cells. J Biol Chem 283:34519–34531

    Article  PubMed  CAS  Google Scholar 

  • Hafsah Z, Tahara S, Mizutani J (1987) Microbiol metabolism of chlorinated nitrobenzenes. IV. Metabolic pathways of 2, 4-dichloro-1-nitrobenzene in Mucor javanicus. J Pesticide Sci 12:617–625

    CAS  Google Scholar 

  • Hanigan MH, Devarajan P (2003) Cisplatin nephrotoxicity: molecular mechanisms. Cancer Ther 1:47–61

    PubMed  Google Scholar 

  • Harris JW, Dekant W, Anders MW (1992) In vivo detection and characterization of protein adducts resulting from bioactivation of haloethene cysteine S-conjugates by 19F NMR: chlorotrifluoroethene and tetrafluoroethene. Chem Res Toxicol 5:34–41

    Article  PubMed  CAS  Google Scholar 

  • Hayden PJ, Stevens JL (1990) Cysteine conjugate toxicity, metabolism and binding to macromolecules in isolated rat kidney mitochondria. Mol Pharmacol 37:468–476

    PubMed  CAS  Google Scholar 

  • Hayden PJ, Ichimura T, McCann DJ, Pohl LR, Stevens JL (1991) Detection of cysteine conjugate metabolite adduct formation with specific mitochondrial proteins using antibodies raised against halothane metabolite adducts. J Biol Chem 266:18415–18418

    PubMed  CAS  Google Scholar 

  • Hinchman CA, Ballatori N (1994) Glutathione conjugation and conversion to mercapturic acids can occur as an intrahepatic process. J Toxicol Environ Health 41:387–409

    Article  PubMed  CAS  Google Scholar 

  • Ho HK, Hu Z-H, Tzung S-P, Hockenbery DM, Fausto N, Nelson SD, Bruschi SA (2005) BCL-xL overexpression effectively protects against tetrafluoroethylcysteine-induced intramitochondrial damage and cell death. Biochem Pharmacol 69:147–157

    Article  PubMed  CAS  Google Scholar 

  • Ho HK, Jia Y, Coe KJ, Gao Q, Doneanu CE, Hu ZH, Bammler TK, Beyer RP, Fausto N, Bruschi SA, Nelson SD (2006) Cytosolic heat shock proteins and heme oxygenase-1 are preferentially induced in response to specific and localized intramitochondrial damage by tetrafluoroethylcysteine. Biochem Pharmacol 72:80–90

    Article  PubMed  CAS  Google Scholar 

  • Iciek M, Kwiecień I, Włodek L (2009) Biological properties of garlic and garlic-derived organosulfur compounds. Environ Mol Mutagen 50:247–265

    Article  PubMed  CAS  Google Scholar 

  • Ip C, Zhu Z, Thompson HJ, Lisk D, Ganther HE (1999) Chemoprevention of mammary cancer with Se-allylselenocysteine and other selenoamino acids in the rat. Anticancer Res 19:2875–2880

    PubMed  CAS  Google Scholar 

  • Ip C, Thompson HJ, Zhu Z, Ganther HE (2000) In vitro and in vivo studies of methylseleninic acid: evidence that a monomethylated selenium metabolite is critical for cancer chemoprevention. Cancer Res 60:2882–2886

    PubMed  CAS  Google Scholar 

  • Ip C, Dong Y, Ganther HE (2002) New concepts in selenium chemoprevention. Cancer Metastasis Rev 21:281–289

    Article  PubMed  CAS  Google Scholar 

  • Islam MM, Nautiyal M, Wynn RM, Mobley JA, Chunag DT, Hutson SM (2010) Branched-chain amino acid metabolon. Interaction of glutamate dehydrogenase with mitochondrial branched-chain aminotransferase (BCATm). J Biol Chem 285:265–276

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto T, Hiraku Y, Oikawa S, Mizutani H, Kojima M, Kawanishi S (2004) DNA intrastrand cross-link at the 5’-GA-3’ sequence formed by busulfan and its role in the cytotoxic effect. Cancer Sci 95:454–458

    Article  PubMed  CAS  Google Scholar 

  • Jakoby WB, Stevens J (1984) Cysteine conjugate lyase and the thiomethyl shunt. Biochem Soc Trans 12:33–35

    PubMed  CAS  Google Scholar 

  • James EA, Gygi SP, Adams ML, Pierce RH, Fausto N, Aebersold RH, Nelson SD, Bruschi SA (2002) Mitochondrial aconitase modification, functional inhibition, and evidence for a supramolecular complex of the TCA cycle by the renal toxicant S-(1, 1, 2, 2-tetrafluoroethyl)-l-cysteine. Biochemistry 41:6789–6797

    Article  PubMed  CAS  Google Scholar 

  • Kim HS, Cha SH, Abraham DG, Cooper AJL, Endou H (1997) Intranephron distribution of cysteine-S-conjugate β-lyase activity and implication for hexachloro-1, 3-butadiene-induced nephrotoxicity in rats. Arch Toxicol 71:131–141

    Article  PubMed  CAS  Google Scholar 

  • Kishida K, Saida N, Yamamura N, Iwai Y, Sasabe T (2001) Cysteine conjugate of methazolamide is metabolized by β-lyase. J Pharm Sci 90:224–233

    Article  PubMed  CAS  Google Scholar 

  • Koob M, Dekant W (1991) Bioactivation of xenobiotics by formation of toxic glutathione conjugates. Chem Biol Interact 77:107–136

    Article  PubMed  CAS  Google Scholar 

  • Larsen GL, Bakke JE (1983) Metabolism of mercapturic acid-pathway metabolites of 2-chloro-N-isopropylacetanilide (propachlor) by gastrointestinal bacteria. Xenobiotica 13:115–126

    Article  PubMed  CAS  Google Scholar 

  • Larsen GL, Stevens JL (1986) Cysteine conjugate β-lyase in the gastrointestinal bacterium Eubacterium limosum. Mol Pharmacol 29:97–103

    PubMed  CAS  Google Scholar 

  • Larsen GL, Larson JD, Gustafsson J-Å (1983) Cysteine conjugate β-lyase in the gastrointestinal bacterium Fusobacterium necrophorum. Xenobiotica 13:689–700

    Article  PubMed  CAS  Google Scholar 

  • Lee J-I, Nian H, Cooper AJL, Sinha R, Dai J, Bisson WH, Dashwood RH, Pinto JT (2009) α-Keto acid metabolites of naturally occurring organoselenium compounds as inhibitors of histone deacetylase in human prostate cancer cells. Cancer Prev Res 2:683–693

    Article  CAS  Google Scholar 

  • Mattingly JR Jr, Iriarte A, Martinez-Carrion M (1995) Homologous proteins with different affinities for groEL. The refolding of the aspartate aminotransferase isozymes at varying temperatures. J Biol Chem 270:1138–1148

    Article  PubMed  CAS  Google Scholar 

  • Morino Y, Osman AM, Okamoto M (1974) Formate-induced labeling of the active site of aspartate aminotransferase by β-chloro-l-alanine. J Biol Chem 249:6684–6692

    PubMed  CAS  Google Scholar 

  • Mosca M, Cozzi L, Breton J, Speciale C, Okuno E, Schwarcz R, Benatti L (1994) Molecular cloning of rat kynurenine aminotransferase: identity with glutamine transaminase K. FEBS Lett 353:21–24

    Article  PubMed  CAS  Google Scholar 

  • Musah RA, He Q, Kubec R, Jadhav A (2009) Studies of a novel cysteine sulfoxide lyase from Petiveria alliacea: The first heteromeric alliinase. Plant Physiol 151:1304–1316

    Article  PubMed  CAS  Google Scholar 

  • Nagelkerke JF, Boogaard PJ (1991) Nephrotoxicity of halogenated alkenyl cysteine-S-conjugates. Life Sci 49:1769–1776

    Article  PubMed  CAS  Google Scholar 

  • Nagini S (2008) Cancer chemoprevention by garlic and its organosulfur compounds–panacea or promise? Anticancer Agents Med Chem 8:313–321

    Article  PubMed  CAS  Google Scholar 

  • Natsch A, Schmid J, Flachsmann F (2004) Identification of odiferous sulfanylalkanols in human axilla secretions and their formation through cleavage of cysteine precursors by a C-S lyase isolated from axilla bacteria. Chem Biodiv 1:1058–1072

    Article  CAS  Google Scholar 

  • Nelson SD, Pearson PG (1990) Covalent and noncovalent interactions in acute lethal cell injury caused by chemicals. Annu Rev Pharmacol Toxicol 30:169–195

    Article  PubMed  CAS  Google Scholar 

  • Nian H, Bisson WH, Dashwood WM, Pinto JT, Dashwood RH (2009) α-Keto acid metabolites of organoselenium compounds inhibit histone deacetylase activity in human colon cancer cells. Carcinogenesis 30:1416–1423

    Article  PubMed  CAS  Google Scholar 

  • Ohta Y, Suzuki KT (2008) Methylation and demethylation of intermediates selenide and methylselenol in the metabolism of selenium. Toxicol Appl Pharmacol 226:169–177

    Article  PubMed  CAS  Google Scholar 

  • Perry SJ, Schofield MA, MacFarlane M, Lock EA, King LJ, Gibson GG, Goldfarb PS (1993) Isolation and expression of a cDNA coding for rat kidney cytosolic cysteine conjugate β-lyase. Mol Pharmacol 43:660–665

    PubMed  CAS  Google Scholar 

  • Pinto JT, Lapsia S, Shah A, Santiago H, Kim G (2001) Antiproliferative effects of garlic-derived and other allium related compounds. Adv Exp Med Biol 492:83–106

    PubMed  CAS  Google Scholar 

  • Pinto JT, Krasnikov BF, Cooper AJL (2006) Redox-sensitive proteins are potential targets of garlic derived mercaptocysteine derivatives. J Nutr 136:S835–S841

    Google Scholar 

  • Pinto JT, Lee JI, Sinha Cooper AJL (2010) Chemopreventive mechanisms of α-keto acid metabolites of naturally occurring organoselenium compounds. this volume, Amino Acids

    Google Scholar 

  • Ritter CA, Bohnenstengel F, Hofmann U, Kroemer HK, Sperker B (1999) Determination of tetrahydrothiophene formation as a probe of in vitro busulfan metabolism by human glutathione S-transferase A1–1: use of highly sensitive gas chromatographic-mass spectrometric method. J Chromatog B Biomed Sci Appl 730:25–31

    Article  CAS  Google Scholar 

  • Ritter CA, Sperker B, Grube M, Dressel D, Kunert-Keil C, Kroemer HK (2002) Overexpression of glutathione S-transferase A1–1 in ECV 304 cells protects against busulfan mediated G2-arrest and induces tissue factor expression. Br J Pharmacol 137:1100–1106

    Article  PubMed  CAS  Google Scholar 

  • Roberts JJ, Warwick GP (1961) The mode of action of alkylating agents. III. The formation of 3-hydroxytetrahydrothiophene-1:1-dioxide from 1:4-dimethanesulphonyloxybutane (myleran), S-β-l-alanyl-tetrahydrothiophenium mesylate, tetrahydrothiophene and tetrahydrothiophene-1:1-dioxide in the rat, rabbit and mouse. Biochem Pharmacol 6:217–227

    Google Scholar 

  • Rooseboom M, Vermeulen NPE, Andreadou I, Commandeur JNM (2000) Evaluation of the kinetics of β-elimination reactions of selenocysteine Se-conjugates in human renal cytosol: possible implications for the use as kidney selective prodrugs. J Pharmacol Exp Ther 294:762–769

    PubMed  CAS  Google Scholar 

  • Rooseboom M, Vermeulen NPE, Groot EJ, Commandeur JNM (2002a) Tissue distribution of cytosolic β-elimination reactions of selenocysteine Se-conjugates in rat and human. Chem Biol Interact 140:243–264

    Article  PubMed  CAS  Google Scholar 

  • Rooseboom M, Vermeulen NPE, Commandeur JNM (2002b) Enzymatic pathways of β elimination of chemopreventive selenocysteine Se conjugates. Methods Enzymol 348:191–200

    Article  PubMed  CAS  Google Scholar 

  • Rooseboom M, Vermeulen NPE, Durgut F, Commandeur JNM (2002c) Comparative study on the bioactivation, mechanisms and cytotoxicity of Te-phenyl-l-tellurocysteine, Se-phenyl-l-selenocysteine and S-phenyl-l-cysteine. Chem Res Toxicol 15:1610–1618

    Article  PubMed  CAS  Google Scholar 

  • Rossi F, Han Q, Li J, Li J, Rizzi M (2004) Crystal structure of human kynurenine aminotransferase I. J Biol Chem 279:50214–50220

    Article  PubMed  CAS  Google Scholar 

  • Saari JC, Schultze MO (1965) Cleavage of S-(1, 2-dichlorovinyl)-l-cysteine by Escherichia coli B. Arch Biochem Biophys 109:595–602

    Article  PubMed  CAS  Google Scholar 

  • Schwiertz A, Deubel S, Birringer M (2008) Bioactivation of selenocysteine derivatives by β-lyases present in common gastrointestinal bacterial species. Int J Vitam Nutr Res 78:169–174

    Article  PubMed  CAS  Google Scholar 

  • Scott CS, Chiu WA (2006) Trichloroethylene cancer epidemiology: a consideration of select issues. Environ Health Perspect 114:1471–1478

    Article  PubMed  CAS  Google Scholar 

  • Shimomura N, Honma M, Chiba S, Tahara S, Mizutani J (1992) Cysteine-conjugate β-lyase from Mucor javanicus. Biosci Biotech Biochem 56:963–964

    Article  CAS  Google Scholar 

  • Silbernagl S, Heuner A (1993) Renal transport of mercapturic acids and their precursors, the S-conjugates of glutathione and cysteine. In: Anders MW, Dekant W, Henschler D, Oberleithner H, Silbernagl S (eds) Renal disposition and nephrotoxicity of xenobiotics. Academic Press, Inc., San Diego, pp 135–154

    Google Scholar 

  • Srere PA (1987) Complexes of sequential metabolic enzymes. Annu Rev Biochem 56:89–124

    Article  PubMed  CAS  Google Scholar 

  • Starkenmann C, Niclass Y, Troccaz M, Clark AJ (2005) Identification of the precursor of (S)-3-methyl-3-sulfanylhexan-1-ol, the sulfury malodour of human axilla sweat. Chem Biodivers 2:705–716

    Article  PubMed  CAS  Google Scholar 

  • Starkenmann C, Luca L, Niclass Y, Praz E, Roguet D (2006) Comparison of volatile constituents of Persicaria odorata (Lour.) Soják (Polygonum odoratum Lour.) and Persicaria hydropiper L. Spach (Polygonum hydropiper L.). J Agric Food Chem 54:3067–3071

    Article  PubMed  CAS  Google Scholar 

  • Starkenmann C, Niclass Y, Escher S (2007) Volatile organic sulfur-containing constituents in Poncirus trifoliata (L.) Raf. (Rutaceae). J Agric Food Chem 55:4511–4517

    Article  PubMed  CAS  Google Scholar 

  • Starkenmann C, Le Calvé B, Niclass Y, Cayeux I, Beccucci S, Troccaz M (2008) Olfactory perception of cysteine-S-conjugates from fruits and vegetables. J Agric Food Chem 56:9575–9580

    Article  PubMed  CAS  Google Scholar 

  • Stevens JL (1985) Isolation and characterization of a rat liver enzyme with both cysteine conjugate β-lyase and kynureninase activity. J Biol Chem 260:7945–7950

    PubMed  CAS  Google Scholar 

  • Stevens JL, Jones DP (1989) The mercapturic acid pathway: Biosynthesis, intermediary metabolism, and physiological disposition. In: Dolphin D, Poulson R, Avramović O (eds) Glutathione: chemical biochemical and medicinal aspects, Part B. Wiley, New York, pp 45–84

    Google Scholar 

  • Stevens JL, Robbins JD, Byrd RA (1986) A purified cysteine conjugate β-lyase from rat kidney cytosol. Requirement for an α-keto acid or an amino acid oxidase for activity and identity with soluble glutamine transaminase K. J Biol Chem 261:15529–15537

    PubMed  CAS  Google Scholar 

  • Suzuki S, Tomisawa H, Ichihara S, Fukuzawa M, Tateishi M (1982) A C-S bond cleavage enzyme of cysteine conjugates in intestinal microorganisms. Biochem Pharmacol 31:2137–2140

    Article  PubMed  CAS  Google Scholar 

  • Suzuki KT, Doi C, Suzuki N (2006) Metabolism of 76Se-methylselenocysteine compared with that of 77Se-selenomethionine and 82Se-selenite. Toxicol Appl Pharmacol 217:185–195

    Google Scholar 

  • Suzuki KT, Kurasaki K, Suzuki N (2007) Selenocysteine β-lyase and methylselenol demethylase in the metabolism of Se-methylated selenocompounds into selenide. Biochim Biophys Acta 1770:1053–1061

    PubMed  CAS  Google Scholar 

  • Tateishi M, Suzuki S, Shimizu H (1978a) The metabolism of bromazepam in the rat–identification of mercapturic acid and its conversion in vitro to methylthio-bromazepam. Biochem Pharmacol 27:809–810

    Article  PubMed  CAS  Google Scholar 

  • Tateishi M, Suzuki S, Shimizu H (1978b) Cysteine conjugate β-lyase in rat liver. A novel enzyme catalyzing formation of thiol-containing metabolites of drugs. J Biol Chem 253:8854–8859

    PubMed  CAS  Google Scholar 

  • Tomisawa H, Suzuki S, Ichihara S, Fukuzawa H, Tateishi M (1984) Purification and characterization of a C-S lyase from Fusobacterium varium. A C-S cleavage enzyme of cysteine conjugates and some S-containing amino acids. J Biol Chem 259:2588–2593

    PubMed  CAS  Google Scholar 

  • Townsend DM, Tew KD, He L, King JB, Hanigan MH (2009) Role of glutathione S-transferase Pi in cisplatin-induced nephrotoxicity. Biomed Pharmacother 63:79–85

    Article  PubMed  CAS  Google Scholar 

  • Tsuji Y, Suzuki N, Suzuki KT, Ogra Y (2009) Selenium metabolism in rats with long-term ingestion of Se-methylselenocysteine using enriched stable isotopes. J Toxicol Sci 34:191–200

    Google Scholar 

  • Ueno H, Likos JJ, Metzler DE (1982) Chemistry of the inactivation of cytosolic aspartate aminotransferase by serine O-sulfate. Biochemistry 21:4387–4393

    Article  PubMed  CAS  Google Scholar 

  • Uttamsingh V, Anders MW (1999) Acylase-catalyzed deacetylation of haloalkene-derived mercapturates. Chem Res Toxicol 12:937–942

    Article  PubMed  CAS  Google Scholar 

  • Villar MT, Niatsetskaya ZV, Cooper AJL, Artigues A (2007) Inactivation of rat liver mitochondrial aspartate aminotransferase by a halogenated cysteine S-conjugate. Mol Cell Proteomics 6(Suppl 1) (Abstract #B5, 40)

  • Wadhwa R, Takano S, Kaur K, Aida S, Yaguchi T, Kaul Z, Hirano T, Taira K, Kaul SC (2005) Identification and characterization of molecular interactions between mortalin/mtHsp70 and HSP60. Biochem J 391:185–190

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi H, Wakabayashi M, Eisenreich W, Engel KH (2004) Stereochemical course of the generation of 3-mercaptohexanol by β-lyase-catalyzed cleavage of cysteine conjugates. J Agric Food Chem 52:110–116

    Article  PubMed  CAS  Google Scholar 

  • Warrander A, Allen JM, Andrews RS (1985) Incorporation of radiolabelled amino acids into the sulphur-containing metabolites of paracetamol by the hamster. Xenobiotica 15:891–897

    Article  PubMed  CAS  Google Scholar 

  • Wessjohann LA, Schneider A, Abbas M, Brandt W (2007) Selenium in chemistry and biochemistry in comparison to sulfur. Biol Chem 388:997–1006

    Article  PubMed  CAS  Google Scholar 

  • Younis IR, Elliott M, Peer CJ, Cooper AJL, Pinto JT, Konat GW, Kraszpulski M, Petros WP, Callery PS (2008) Dehydroalanine analog of glutathione: an electrophilic busulfan metabolite that binds to human glutathione S-transferase A1–1. J Pharmacol Exp Ther 327:770–776

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Hanigan MH (2003) Role of cysteine S-conjugate β-lyase in the metabolism of cisplatin. J Pharmacol Exp Ther 306:988–994

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Cooper AJL, Krasnikov BF, Xu H, Bubber P, Pinto JT, Gibson GE, Hanigan MH (2006) Cisplatin-induced toxicity is associated with platinum deposition in mouse kidney mitochondria in vivo and with selective inactivation of α-ketoglutarate dehydrogenase complex in LLC-PK1 cells. Biochemistry 45:8959–8971

    Article  PubMed  CAS  Google Scholar 

  • Zhu Z, Jiang W, Ganther HE, Ip C, Thompson HJ (2000) In vitro effects of Se-allylselenocysteine and Se-propylselenocysteine on cell growth, DNA integrity, and apoptosis. Biochem Pharmacol 60:1467–1473

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Part of the work cited from the authors’ laboratories was supported by NIH grants RO1 ES8421 (AJLC), CA111842 (JTP), GM51916 (SAB) National Institute of Justice Grant IJ-CX-K014 (PSC),University of Kansas Medical Center ROV10525 (AA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur J. L. Cooper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, A.J.L., Krasnikov, B.F., Niatsetskaya, Z.V. et al. Cysteine S-conjugate β-lyases: important roles in the metabolism of naturally occurring sulfur and selenium-containing compounds, xenobiotics and anticancer agents. Amino Acids 41, 7–27 (2011). https://doi.org/10.1007/s00726-010-0552-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0552-0

Keywords

Navigation