Skip to main content

Advertisement

Log in

Shear Stress Regulates HUVEC Hydraulic Conductivity by Occludin Phosphorylation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Human umbilical vein endothelial cells (HUVECs) display hydraulic conductivity (LP) responses to shear stress that differ markedly from the responses of bovine aortic endothelial cells (BAECs). In HUVECs, 5, 10, and 20 dyn cm−2 steady shear stress transiently increased LP with a return to preshear baseline after a 2-h exposure to shear stress. Pure oscillatory shear stress of 0 ± 20 dyn cm−2 (mean±amplitude) had no effect on LP, whereas superposition of oscillatory shear stress on steady shear stress suppressed the effect induced by steady shear stress alone. Shear reversal (amplitude greater than mean) was not necessary for the inhibitory influence of oscillatory shear stress. The transient increase of LP by steady shear stress was not affected by incubation with BAPTA-AM (10 μM), suggesting calcium independence of the shear response. Decreasing nitric oxide (NO) concentration with L-NMMA (100 μM), a nitric oxide synthase (NOS) inhibitor, did not inhibit the HUVEC LP response to shear stress. At the protein level, 10 dyn cm−2 shear stress did not affect the total content of occludin, but it did elevate the phosphorylation level transiently. The positive correlation between occludin phosphorylation and hydraulic conductivity parallels observations in BAECs and suggests that occludin phosphorylation may be a general mediator of shear-LP responses in diverse endothelial cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamson, R. H., and C. C. Michel. Pathways through the intercellular clefts of frog mesenteric capillaries. J. Physiol. 466:303–327, 1993.

    Google Scholar 

  2. Antonetti, D. A., A. J. Barber, L. A. Hollinger, E. B. Wolpert, and T. W. Gardner. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J. Biol. Chem. 274:23463–23467, 1999.

    Article  Google Scholar 

  3. Antonetti, D. A., E. B. Wolpert, L. DeMaio, N. S. Harhaj, and R. C. Scaduto Jr. Hydrocortisone decreases retinal endothelial cell water and solute flux coincident with increased content and decreased phosphorylation of occludin. J. Neurochem. 80:667–677, 2002.

    Article  Google Scholar 

  4. Arese, M., C. Ferrandi, L. Primo, G. Camussi, and F. Bussolino. HIV-1 Tat protein stimulates in vivo vascular permeability and lymphomononuclear cell recruitment. J. Immunol. 166:1380–1388, 2001.

    Google Scholar 

  5. Brakemeier, S., I. Eichler, H. Hopp, R. Kohler, and J. Hoyer. Up-regulation of endothelial stretch-activated cation channels by fluid shear stress. Cardiovasc. Res. 53:209–218, 2002.

    Article  Google Scholar 

  6. Chang, Y. S. The Mechanism of Shear Stress-Induced Increases in Endothelial Transport Properties. PhD Thesis, State College: The Pennsylvania State University, 1998.

  7. Chang, Y. S., L. L. Munn, M. V. Hillsley, R. O. Dull, J. Yuan, S. Lakshminarayanan, T. W. Gardner, R. K. Jain, and J. M. Tarbell. Effect of vascular endothelial growth factor on cultured endothelial cell monolayer transport properties. Microvasc. Res. 59:265–277, 2000.

    Article  Google Scholar 

  8. Chang, Y. S., J. A. Yaccino, S. Lakshminarayanan, J. A. Frangos, and J. M. Tarbell. Shear-induced increase in hydraulic conductivity in endothelial cells is mediated by a nitric oxide-dependent mechanism. Arterioscler Thromb. Vasc. Biol. 20:35–42, 2000.

    Google Scholar 

  9. Curry, F. E., M. Zeng, and R. H. Adamson. Thrombin increases permeability only in venules exposed to inflammatory conditions. Am. J. Physiol. Heart Circ. Physiol. 285:H2446–H2453, 2003.

    Google Scholar 

  10. Dejana, E., O. Valiron, P. Navarro, and M. G. Lampugnani. Intercellular junctions in the endothelium and the control of vascular permeability. Ann. N. Y. Acad. Sci. 811:36–43; discussion 43–34, 1997.

    Google Scholar 

  11. DeMaio, L., Y. S. Chang, T. W. Gardner, J. M. Tarbell, and D. A. Antonetti. Shear stress regulates occludin content and phosphorylation. Am. J. Physiol. Heart Circ. Physiol. 281:H105–H113, 2001.

    Google Scholar 

  12. DeMaio, L., J. M. Tarbell, R. C. Scaduto, T. W. Gardner, and D. A. Antonetti. A transmural pressure gradient induces mechanical and biological adaptive responses in endothelial cells. Am. J. Physiol. Heart Circ. Physiol, 286(2):H731–741, 2004.

    Article  Google Scholar 

  13. Florian, J. A., J. R. Kosky, K. Ainslie, Z. Pang, R. O. Dull, and J. M. Tarbell. Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ. Res. 93:e136–142, 2003.

    Article  Google Scholar 

  14. Hillsley, M. V., and J. M. Tarbell. Oscillatory shear alters endothelial hydraulic conductivity and nitric oxide levels. Biochem. Biophys. Res. Commun. 293:1466–1471, 2002.

    Article  Google Scholar 

  15. Hirase, T., S. Kawashima, E. Y. Wong, T. Ueyama, Y. Rikitake, S. Tsukita, M. Yokoyama, and J. M. Staddon. Regulation of tight junction permeability and occludin phosphorylation by Rhoa-p160ROCK-dependent and -independent mechanisms. J. Biol. Chem. 276:10423–10431, 2001.

    Article  Google Scholar 

  16. Hirase, T., J. M. Staddon, M. Saitou, Y. Ando-Akatsuka, M. Itoh, M. Furuse, K. Fujimoto, S. Tsukita, and L. L. Rubin. Occludin as a possible determinant of tight junction permeability in endothelial cells. J. Cell Sci. 110(Pt 14):1603–1613, 1997.

    Google Scholar 

  17. Hsieh, H. J., N. Q. Li, and J. A. Frangos. Pulsatile and steady flow induces c-fos expression in human endothelial cells. J. Cell Physiol. 154:143–151, 1993.

    Article  Google Scholar 

  18. Jaffe, E. A., R. L. Nachman, C. G. Becker, and C. R. Minick. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest. 52:2745–2756, 1973.

    Google Scholar 

  19. Kuchan, M. J., and J. A. Frangos. Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am. J. Physiol. 266:C628–636, 1994.

    Google Scholar 

  20. Lever, M. J., J. M. Tarbell, and C. G. Caro. The effect of luminal flow in rabbit carotid artery on transmural fluid transport. Exp. Physiol. 77:553–563, 1992.

    Google Scholar 

  21. Li, Y. S., J. Y. Shyy, S. Li, J. Lee, B. Su, M. Karin, and S. Chien. The Ras-JNK pathway is involved in shear-induced gene expression. Mol. Cell Biol. 16:5947–5954, 1996.

    Google Scholar 

  22. Lin, M. C., F. Almus-Jacobs, H. H. Chen, G. C. Parry, N. Mackman, J. Y. Shyy, and S. Chien. Shear stress induction of the tissue factor gene. J. Clin. Invest. 99:737–744, 1997.

    Google Scholar 

  23. Misko, T. P., R. J. Schilling, D. Salvemini, W. M. Moore, and M. G. Currie. A fluorometric assay for the measurement of nitrite in biological samples. Anal. Biochem. 214:11–16, 1993.

    Article  Google Scholar 

  24. Montermini, D., C. P. Winlove, and C. Michel. Effects of perfusion rate on permeability of frog and rat mesenteric microvessels to sodium fluorescein. J. Physiol. 543:959–975, 2002.

    Article  Google Scholar 

  25. Neal, C. R., and D. O. Bates. Measurement of hydraulic conductivity of single perfused Rana mesenteric microvessels between periods of controlled shear stress. J. Physiol. 543:947–957, 2002.

    Article  Google Scholar 

  26. Nerem, R. M. Vascular fluid mechanics, the arterial wall, and atherosclerosis. J. Biomech. Eng. 114:274–282, 1992.

    Google Scholar 

  27. Pang, Z., and J. M. Tarbell. In vitro study of Starling's hypothesis in a cultured monolayer of bovine aortic endothelial cells. J. Vasc. Res. 40:351–358, 2003.

    Article  Google Scholar 

  28. Sakao, Y., O. Kajikawa, T. R. Martin, Y. Nakahara, W. A. Hadden, 3rd, C. L. Harmon, and E. J. Miller. Association of IL-8 and MCP-1 with the development of reexpansion pulmonary edema in rabbits. Ann. Thorac. Surg. 71:1825–1832, 2001.

    Article  Google Scholar 

  29. Sandoval, R., A. B. Malik, T. Naqvi, D. Mehta, and C. Tiruppathi. Requirement for Ca2+ signaling in the mechanism of thrombin-induced increase in endothelial permeability. Am. J. Physiol. Lung Cell Mol. Physiol. 280:L239–247, 2001.

    Google Scholar 

  30. Schwarz, G., G. Callewaert, G. Droogmans, and B. Nilius. Shear stress-induced calcium transients in endothelial cells from human umbilical cord veins. J. Physiol. 458:527–538, 1992.

    Google Scholar 

  31. Shyy, Y. J., H. J. Hsieh, S. Usami, and S. Chien. Fluid shear stress induces a biphasic response of human monocyte chemotactic protein 1 gene expression in vascular endothelium. Proc. Natl. Acad. Sci. U.S.A. 91:4678–4682, 1994.

    Google Scholar 

  32. Sill, H. W., Y. S. Chang, J. R. Artman, J. A. Frangos, T. M. Hollis, and J. M. Tarbell. Shear stress increases hydraulic conductivity of cultured endothelial monolayers. Am. J. Physiol. 268:H535–543, 1995.

    Google Scholar 

  33. Wachtel, M., K. Frei, E. Ehler, A. Fontana, K. Winterhalter, and S. M. Gloor. Occludin proteolysis and increased permeability in endothelial cells through tyrosine phosphatase inhibition. J. Cell Sci. 112(Pt 23):4347–4356, 1999.

    Google Scholar 

  34. Williams, D. A. Network assessment of capillary hydraulic conductivity after abrupt changes in fluid shear stress. Microvasc. Res. 57:107–117, 1999.

    Article  Google Scholar 

  35. Yoshikawa, N., H. Ariyoshi, M. Ikeda, M. Sakon, T. Kawasaki, and M. Monden. Shear-stress causes polarized change in cytoplasmic calcium concentration in human umbilical vein endothelial cells (HUVECs). Cell Calc. 22:189–194, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Tarbell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, Z., Antonetti, D.A. & Tarbell, J.M. Shear Stress Regulates HUVEC Hydraulic Conductivity by Occludin Phosphorylation. Ann Biomed Eng 33, 1536–1545 (2005). https://doi.org/10.1007/s10439-005-7786-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-7786-0

Key Words

Navigation