Skip to main content
Log in

Mechanisms of Interstitial Flow-Induced Remodeling of Fibroblast–Collagen Cultures

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Interstitial fluid flow, critical for macromolecular transport, was recently shown to drive fibroblast differentiation and perpendicular cell and matrix alignment in 3D collagen cultures. Here we explore the mechanisms underlying this flow-induced cell and collagen alignment. Cell and matrix alignment was assessed from 3D confocal reflectance stacks using a Fast Fourier Transform method. We found that human dermal and lung fibroblasts align perpendicular to flow in the range of 5–13 μm/s (0.1–0.3 dyn/cm2) in collagen; however, neither cells nor matrix fibers align in fibrin cultures, which unlike collagen, is covalently cross-linked and generally degraded by cell fibrinolysis. We also found that even acellular collagen matrices align weakly upon exposure to flow. Matrix alignment begins within 12 h of flow onset and continues, along with cell alignment, over 48 h. Together, these data suggest that interstitial flow first induces collagen fiber alignment, providing contact guidance for the cells to orient along the aligned matrix; later, the aligned cells further remodel and align their surrounding matrix fibers. These findings help elucidate the effects of interstitial flow on cells in matrices and have relevance physiologically in tissue remodeling and in tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.

Similar content being viewed by others

REFERENCES

  1. Barocas, V. H., T. S. Girton, and R. T. Tranquillo. Engineered alignment in media equivalents: Magnetic prealignment and mandrel compaction. J. Biomech. Eng. 120:660–666, 1998.

    Article  PubMed  CAS  Google Scholar 

  2. Brightman, A. O., B. P. Rajwa, J. E. Sturgis, M. E. McCallister, J. P. Robinson, and S. L. Voytik-Harbin. Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro. Biopolymers 54:222–234, 2000.

    Article  PubMed  CAS  Google Scholar 

  3. Chaudhuri, S., H. Nguyen, R. M. Rangayyan, S. Walsh, and C. B. Frank. A Fourier domain directional filtering method for analysis of collagen alignment in ligaments. IEEE Trans. Biomed. Eng. 34:509–518, 1987.

    Article  PubMed  CAS  Google Scholar 

  4. Choe, M. M., P. H. S. Sporn, and M. A. Swartz. An in vitro airway wall model of remodeling. Am. J. Physiol. Lung Cell Mol. Physiol. 285:L427–L433, 2003.

    PubMed  CAS  Google Scholar 

  5. Costa, K. D., E. J. Lee, and J. W. Holmes. Creating alignment and anisotropy in engineered heart tissue: Role of boundary conditions in a model three-dimensional culture system. Tissue Eng. 9:567–577, 2003.

    Article  PubMed  Google Scholar 

  6. De Wever, O., and M. Mareel. Role of tissue stroma in cancer cell invasion. J. Pathol. 200:429–447, 2003.

    Article  PubMed  CAS  Google Scholar 

  7. Desmouliere, A., C. Guyot, and C. Gabbiani. The stroma reaction myofibroblast: A key player in the control of tumor cell behavior. Int. J. Dev. Biol. 48:509–517, 2004.

    Article  PubMed  CAS  Google Scholar 

  8. Eastwood, M., V. C. Mudera, D. A. McGrouther, and R. A. Brown. Effect of precise mechanical loading on fibroblast populated collagen lattices: Morphological changes. Cell Motil. Cytoskeleton 40:13–21, 1998.

    Article  PubMed  CAS  Google Scholar 

  9. Eckes, B., P. Zigrino, D. Kessler, O. Holtkotter, P. Shephard, C. Mauch, and T. Krieg. Fibroblast–matrix interactions in wound healing and fibrosis. Matrix Biol. 19:325–332, 2000.

    Article  PubMed  CAS  Google Scholar 

  10. Ehrlich, H. P., and T. M. Krummel. Regulation of wound healing from a connective tissue perspective. Wound Repair Regen. 4:203–210, 1996.

    Article  PubMed  CAS  Google Scholar 

  11. Farsi, J. M., and J. E. Aubin. Microfilament rearrangements during fibroblast-induced contraction of three-dimensional hydrated collagen gels. Cell Motil. 4:29–40, 1984.

    Article  PubMed  CAS  Google Scholar 

  12. Friedl, P., and E. B. Brocker. The biology of cell locomotion within three-dimensional extracellular matrix. Cell. Mol. Life Sci. 57:41–64, 2000.

    Article  PubMed  CAS  Google Scholar 

  13. Friedl, P., K. Maaser, C. E. Klein, B. Niggemann, G. Krohne, and K. S. Zanker. Migration of highly aggressive mv3 melanoma cells in 3-dimensional collagen lattices results in local matrix reorganization and shedding of alpha2 and beta1 integrins and CD44. Cancer Res. 57:2061–2070, 1997.

    PubMed  CAS  Google Scholar 

  14. Friedl, P., K. S. Zanker, and E. B. Brocker. Cell migration strategies in 3-d extracellular matrix: Differences in morphology, cell matrix interactions, and integrin function. Microsc. Res. Technol. 43:369–378, 1998.

    Article  CAS  Google Scholar 

  15. Girton, T. S., V. H. Barocas, and R. T. Tranquillo. Confined compression of a tissue equivalent: Collagen fibril and cell alignment in response to anisotropic strain. J. Biomech. Eng. 124:568–575, 2002.

    Article  PubMed  CAS  Google Scholar 

  16. Grinnell, F. Fibroblasts, myofibroblasts, and wound contraction. J. Cell Biol. 124:401–404, 1994.

    Article  PubMed  CAS  Google Scholar 

  17. Guido, S., and R. T. Tranquillo. A methodology for the systematic and quantitative study of cell contact guidance in oriented collagen gels. Correlation of fibroblast orientation and gel birefringence. J. Cell Sci. 105:317–31, 1993.

    PubMed  Google Scholar 

  18. Happel, J., and H. Brenner. Low Reynolds Number Hydrodynamics. Dordrecht: Kluwer Academic Publishers, 1991, pp. 392–399.

    Google Scholar 

  19. Jenkins, G., K. L. Redwood, L. Meadows, and M. R. Green. Effect of gel re-organization and tensional forces on alpha 2 beta 1 integrin levels in dermal fibroblasts. Eur. J. Biochem. 263:93–103, 1999.

    Article  PubMed  CAS  Google Scholar 

  20. Lee, A. A., D. A. Graham, S. Dela Cruz, A. Ratcliffe, and W. J. Karlon. Fluid shear stress-induced alignment of cultured vascular smooth muscle cells. J. Biomech. Eng. 124:37–43, 2002.

    Article  PubMed  Google Scholar 

  21. Ng, C. P., C. L. E. Helm, and M. A. Swartz. Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro. Microvasc. Res. 68:258–264, 2004.

    Article  PubMed  Google Scholar 

  22. Ng, C. P., B. Hinz, and M. A. Swartz. Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J. Cell Sci. 118:4731–4739, 2005.

    Article  PubMed  CAS  Google Scholar 

  23. Ng, C. P., and M. A. Swartz. Fibroblast alignment under interstitial fluid flow using a novel 3-d tissue culture model. Am. J. Physiol. Heart Circ. Physiol. 284:H1771–H1777, 2003.

    PubMed  CAS  Google Scholar 

  24. Nishimura, T., and M. P. Ansell. Fast Fourier transform and filtered image analyses of fiber orientation in osb. Wood Sci. Technol. 36:287–307, 2002.

    Article  CAS  Google Scholar 

  25. Palmer, B. M., and R. Bizios. Quantitative characterization of vascular endothelial cell morphology and orientation using Fourier transform analysis. J. Biomech. Eng. 119:159–165, 1997.

    Article  PubMed  CAS  Google Scholar 

  26. Pedersen, J. A., and M. A. Swartz. Mechanobiology in the third dimension. Ann. Biomed. Eng.33:1469–1490, 2005.

    Article  Google Scholar 

  27. Pourdeyhimi, B., R. Dent, and H. Davis. Measuring fiber orientation in nonwovens, 3: Fourier transform. Text. Res. J. 67:143–151, 1997.

    CAS  Google Scholar 

  28. Schense, J. C., and J. A. Hubbell. Cross-linking exogenous bifunctional peptides into fibrin gels with factor xiiia. Bioconjug. Chem. 10:75–81, 1999.

    Article  PubMed  CAS  Google Scholar 

  29. Tomasek, J. J., G. Gabbiani, B. Hinz, C. Chaponnier, and R. A. Brown. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3:349–363, 2002.

    Article  PubMed  CAS  Google Scholar 

  30. Tranquillo, R. T. Self-organization of tissue-equivalents: The nature and role of contact guidance. Biochem. Soc. Symp. 65:27–42, 1999.

    PubMed  CAS  Google Scholar 

  31. van Zuijlen, P. P. M., H. J. C. de Vries, E. N. Lamme, J. S. E. Coppens, J. van Marle, R. W. Kreis, and E. Middelkoop. Morphometry of dermal collagen orientation by fourier analysis is superior to multi-observer assessment. J. Pathol. 198:284–291, 2002.

    Article  PubMed  Google Scholar 

  32. Wang, D. M., and J. M. Tarbell. Modeling interstitial flow in an artery wall allows estimation of wall shear stress on smooth muscle cells. J. Biomech. Eng. 117:358–63, 1995.

    Article  PubMed  CAS  Google Scholar 

  33. Wang, J. H., and E. S. Grood. The strain magnitude and contact guidance determine orientation response of fibroblasts to cyclic substrate strains. Connect. Tissue Res. 41:29–36, 2000.

    Article  PubMed  CAS  Google Scholar 

  34. Wei, J., and M. B. Russ. Convection and diffusion in tissues and tissue-cultures. J. Theor. Biol. 66:775–787, 1977.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was funded by grants from the Whitaker Foundation (RG-01-0348) and the National Science Foundation (BES-0134551).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melody A. Swartz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, C.P., Swartz, M.A. Mechanisms of Interstitial Flow-Induced Remodeling of Fibroblast–Collagen Cultures. Ann Biomed Eng 34, 446–454 (2006). https://doi.org/10.1007/s10439-005-9067-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-9067-3

Keywords

Navigation