Skip to main content
Log in

Measurement of Solute Transport in the Endothelial Glycocalyx Using Indicator Dilution Techniques

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A new method is presented to quantify changes in permeability of the endothelial glycocalyx to small solutes and fluid flow using techniques of indicator dilution. Following infusion of a bolus of fluorescent solutes (either FITC or FITC conjugated Dextran70) into the rat mesenteric circulation, its transient dispersion through post-capillary venules was recorded and analyzed offline. To represent dispersion of solute as a function of radial position in a microvessel, a virtual transit time (VTT) was calculated from the first moment of fluorescence intensity–time curves. Computer simulations and subsequent in vivo measurements showed that the radial gradient of VTT within the glycocalyx layer (ΔVTT/Δr) may be related to the hydraulic resistance within the layer along the axial direction in a post-capillary venule and the effective diffusion coefficient within the glycocalyx. Modeling the inflammatory process by superfusion of the mesentery with 10−7 M fMLP, ΔVTT/Δr was found to decrease significantly from 0.23 ± 0.08 SD s/μm to 0.18 ± 0.09 SD s/μm. Computer simulations demonstrated that ΔVTT/Δr is principally determined by three independent variables: glycocalyx thickness (δ), hydraulic resistivity (K r) and effective diffusion coefficient of the solute (D eff) within the glycocalyx. Based upon these simulations, the measured 20% decrease in ΔVTT/Δr at the endothelial cell surface corresponds to a 20% increase in D eff over a broad range in K r, assuming a constant thickness δ. The absolute magnitude of D eff required to match ΔVTT/Δr between in vivo measurements and simulations was found to be on the order of 2.5 × 10−3 × D free, where D free is the diffusion coefficient of FITC in aqueous media. Thus the present method may provide a useful tool for elucidating structural and molecular alterations in the glycocalyx as occur with ischemia, metabolic and inflammatory events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Abrahamsson, T., U. Brandt, S. L. Marklund, and P. O. Sjoqvist. Vascular bound recombinant extracellular superoxide dismutase type C protects against the detrimental effects of superoxide radicals on endothelium-dependent arterial relaxation. Circ. Res. 70:264–271, 1992.

    PubMed  CAS  Google Scholar 

  2. Adamson, R. H. Permeability of frog mesenteric capillaries after partial pronase digestion of the endothelial glycocalyx. J. Physiol. 428:1–13, 1990.

    PubMed  CAS  Google Scholar 

  3. Adamson, R. H., and G. Clough. Plasma proteins modify the endothelial cell glycocalyx of frog mesenteric microvessels. J. Physiol. 445:473–486, 1992.

    PubMed  CAS  Google Scholar 

  4. Constantinescu, A. A., H. Vink, and J. A. Spaan. Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler. Thromb. Vasc. Biol. 23:1541–1547, 2003.

    Article  PubMed  CAS  Google Scholar 

  5. Curry, F. E., and C. C. Michel. A fiber matrix model of capillary permeability. Microvasc. Res. 20:96–99, 1980.

    Article  PubMed  CAS  Google Scholar 

  6. Desjardins, C., and B. R. Duling. Heparinase treatment suggests a role for the endothelial cell glycocalyx in regulation of capillary hematocrit. Am. J. Physiol. 258:H647–H654, 1990.

    PubMed  CAS  Google Scholar 

  7. Gouverneur, M., B. Berg, M. Nieuwdorp, E. Stroes, and H. Vink. Vasculoprotective properties of the endothelial glycocalyx: effects of fluid shear stress. J. Intern. Med. 259:393–400, 2006.

    Article  PubMed  CAS  Google Scholar 

  8. Huxley, V. H., and D. A. Williams. Role of a glycocalyx on coronary arteriole permeability to proteins: evidence from enzyme treatments. Am. J. Physiol. Heart Circ. Physiol. 278:H1177–H1185, 2000.

    PubMed  CAS  Google Scholar 

  9. Lipowsky, H. H., L. E. Cram, W. Justice, and M. J. Eppihimer. Effect of erythrocyte deformability on in vivo red cell transit time and hematocrit and their correlation with in vitro filterability. Microvasc. Res. 46:43–64, 1993.

    Article  PubMed  CAS  Google Scholar 

  10. Lipowsky, H. H., and B. W. Zweifach. Application of the “two-slit” photometric technique to the measurement of microvascular volumetric flow rates. Microvasc. Res. 15:93–101, 1978.

    Article  PubMed  CAS  Google Scholar 

  11. Luft, J. H. Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed. Proc. 25:1773–1783, 1966.

    PubMed  CAS  Google Scholar 

  12. McKay, C. B., and H. H. Lipowsky. Arteriovenous distribution of transit times in cremaster muscle of the rat. Microvasc. Res. 36:75–91, 1988.

    Article  PubMed  CAS  Google Scholar 

  13. Meier, P., and K. Zierler. On the theory of the indicator-dilution method for measurement of blood flow and volume. J. Appl. Physiol. 6:731–744, 1954.

    PubMed  CAS  Google Scholar 

  14. Michel, C. C., and F. E. Curry. Microvascular permeability. Physiol. Rev. 79:703–761, 1999.

    PubMed  CAS  Google Scholar 

  15. Mulivor, A. W., and H. H. Lipowsky. Role of glycocalyx in leukocyte-endothelial cell adhesion. Am. J. Physiol. Heart Circ. Physiol. 283:H1282–H1291, 2002.

    PubMed  CAS  Google Scholar 

  16. Mulivor, A. W., and H. H. Lipowsky. Inflammation- and ischemia-induced shedding of venular glycocalyx. Am. J. Physiol. Heart Circ. Physiol. 286:H1672–H1680, 2004.

    Article  PubMed  CAS  Google Scholar 

  17. Nugent, L. J., and R. K. Jain. Plasma pharmacokinetics and interstitial diffusion of macromolecules in a capillary bed. Am. J. Physiol. 246:H129–H137, 1984.

    PubMed  CAS  Google Scholar 

  18. Nugent, L. J., and R. K. Jain. Pore and fiber-matrix models for diffusive transport in normal and neoplastic tissues. Microvasc. Res. 28:270–274, 1984.

    Article  PubMed  CAS  Google Scholar 

  19. Oohira, A., T. N. Wight, and P. Bornstein. Sulfated proteoglycans synthesized by vascular endothelial cells in culture. J. Biol. Chem. 258:2014–2021, 1983.

    PubMed  CAS  Google Scholar 

  20. Pearson, M. J., and H. H. Lipowsky. Influence of erythrocyte aggregation on leukocyte margination in postcapillary venules of rat mesentery. Am. J. Physiol. Heart Circ. Physiol. 279:H1460–H1471, 2000.

    PubMed  CAS  Google Scholar 

  21. Periasamy, N., and A. S. Verkman. Analysis of fluorophore diffusion by continuous distributions of diffusion coefficients: application to photobleaching measurements of multicomponent and anomalous diffusion. Biophys. J. 75:557–567, 1998.

    Article  PubMed  CAS  Google Scholar 

  22. Pittman, R. N., and M. L. Ellsworth. Estimation of red cell flow microvessels: consequences of the Baker-Wayland spatial averaging model. Microvasc. Res. 32:371–388, 1986.

    Article  PubMed  CAS  Google Scholar 

  23. Potter, D. R., and E. R. Damiano. The hydrodynamically relevant endothelial cell glycocalyx observed in vivo is absent in vitro. Circ. Res. 102:770–776, 2008.

    Article  PubMed  CAS  Google Scholar 

  24. Pries, A. R., T. W. Secomb, and P. Gaehtgens. The endothelial surface layer. Pflugers Arch. 440:653–666, 2000.

    Article  PubMed  CAS  Google Scholar 

  25. Quinsey, N. S., A. L. Greedy, S. P. Bottomley, J. C. Whisstock, and R. N. Pike. Antithrombin: in control of coagulation. Int. J. Biochem. Cell Biol. 36:386–389, 2004.

    Article  PubMed  CAS  Google Scholar 

  26. Reitsma, S., D. W. Slaaf, H. Vink, M. A. van Zandvoort, and M. G. Oude Egbrink. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 454:345–359, 2007.

    Article  PubMed  CAS  Google Scholar 

  27. Secomb, T. W., R. Hsu, and A. R. Pries. A model for red blood cell motion in glycocalyx-lined capillaries. Am. J. Physiol. 274:H1016–H1022, 1998.

    PubMed  CAS  Google Scholar 

  28. Sharan, M., and A. S. Popel. A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology 38:415–428, 2001.

    PubMed  CAS  Google Scholar 

  29. Smith, M. L., D. S. Long, E. R. Damiano, and K. Ley. Near-wall micro-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo. Biophys. J. 85:637–645, 2003.

    Article  PubMed  CAS  Google Scholar 

  30. Spaeth, E. E., and S. K. Friedlander. The diffusion of oxygen, carbon dioxide, and inert gas in flowing blood. Biophys. J. 7:827–851, 1967.

    Article  PubMed  CAS  Google Scholar 

  31. Squire, J. M., M. Chew, G. Nneji, C. Neal, J. Barry, and C. Michel. Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J. Struct. Biol. 136:239–255, 2001.

    Article  PubMed  CAS  Google Scholar 

  32. Taylor, G. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. Ser. A 219:186–203, 1953.

    Article  CAS  Google Scholar 

  33. Taylor, G. Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proc. R. Soc. Lond. Ser. A 225:473–477, 1954.

    Article  CAS  Google Scholar 

  34. Vink, H., A. A. Constantinescu, and J. A. Spaan. Oxidized lipoproteins degrade the endothelial surface layer: implications for platelet-endothelial cell adhesion. Circulation 101:1500–1502, 2000.

    PubMed  CAS  Google Scholar 

  35. Vink, H., and B. R. Duling. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ. Res. 79:581–589, 1996.

    PubMed  CAS  Google Scholar 

  36. Vink, H., and B. R. Duling. Capillary endothelial surface layer selectively reduces plasma solute distribution volume. Am. J. Physiol. Heart Circ. Physiol. 278:H285–H289, 2000.

    PubMed  CAS  Google Scholar 

  37. Weinbaum, S., X. Zhang, Y. Han, H. Vink, and S. C. Cowin. Mechanotransduction and flow across the endothelial glycocalyx. Proc. Natl. Acad. Sci. USA 100:7988–7995, 2003.

    Article  PubMed  CAS  Google Scholar 

  38. Yayon, A., M. Klagsbrun, J. D. Esko, P. Leder, and D. M. Ornitz. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64:841–848, 1991.

    Article  PubMed  CAS  Google Scholar 

  39. Zhu, L., V. Castranova, and P. He. fMLP-stimulated neutrophils increase endothelial [Ca2+]i and microvessel permeability in the absence of adhesion: role of reactive oxygen species. Am. J. Physiol. Heart Circ. Physiol. 288:H1331–H1338, 2005.

    Article  PubMed  CAS  Google Scholar 

  40. Zuurbier, C. J., C. Demirci, A. Koeman, H. Vink, and C. Ince. Short-term hyperglycemia increases endothelial glycocalyx permeability and acutely decreases lineal density of capillaries with flowing red blood cells. J. Appl. Physiol. 99:1471–1476, 2005.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH R01 HL-39286. The authors thank Ms. Anne Lescanic for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert H. Lipowsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, L., Lipowsky, H.H. Measurement of Solute Transport in the Endothelial Glycocalyx Using Indicator Dilution Techniques. Ann Biomed Eng 37, 1781–1795 (2009). https://doi.org/10.1007/s10439-009-9743-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9743-9

Keywords

Navigation