Skip to main content
Log in

Diversity of airborne bacteria in samples collected using different devices for aerosol collection

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Bacteria are ubiquitous in the atmosphere, where they form a highly diverse community, albeit low in abundance. Several approaches are available for collecting airborne particles, though few comparative studies have been conducted to date. This study examined how different sampling strategies affect the apparent composition of the airborne community. Three devices were tested: an impactor, a liquid impinger, and a Teflon membrane filter. Comparative studies were conducted at one mountainous location in Norway and one seaside location in Sweden. At both locations, microbial samples were collected in parallel using the sampling devices. DNA extraction, construction of 16S rRNA gene clone libraries, and subsequent sequencing were used to identify the bacteria. The comparison between clone libraries retrieved using the different devices indicated good agreement regarding dominant species, overall diversity, and distribution of species among phylogenetic groups. Among the less common species, there were few shared sequences in different clone libraries, likely due to the high diversity of the assessed samples. Bacteria belonging to the Bacteroidetes and Proteobacteria phyla dominated at both locations, and the most common genera were Sphingomonas sp. and Pantoea sp. Chloroplast-like 16S rRNA gene sequences were detected in all samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.

    CAS  Google Scholar 

  • Amato, P., Parazols, M., Sancelme, M., Laj, P., Mailhot, G., & Delort, A. M. (2007). Microorganisms isolated from the water phase of tropospheric clouds at the puy de dome: Major groups and growth abilities at low temperatures. FEMS Microbiology Ecology, 59(2), 242–254. doi:10.1111/J.1574-6941.2006.00199.X.

    Article  CAS  Google Scholar 

  • Baron, P. A., & Willeke, K. (2001). Aerosol measurement: Principle, techniques, and applications. New York: Wiley.

    Google Scholar 

  • Bauer, H., Kasper-Giebl, A., Löflund, M., Giebl, H., Hitzenberger, R., Zibuschka, F., et al. (2002). The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmospheric Research, 64, 109–119.

    Article  CAS  Google Scholar 

  • Bent, S. J., & Forney, L. J. (2008). The tragedy of the uncommon: Understanding limitations in the analysis of microbial diversity. The ISME Journal, 2, 689–695.

    Article  CAS  Google Scholar 

  • Bovallius, A., Bucht, B., Roffey, R., & Anäs, P. (1978). Long-range air transmission of bacteria. Applied and Environmental Microbiology, 35, 1231–1232.

    CAS  Google Scholar 

  • Bowers, R. M., Lauber, C. L., Wiedinmyer, C., Hamady, M., Hallar, A. G., Fall, R., et al. (2009). Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. Applied and Environmental Microbiology, 75(15), 5121–5130. doi:10.1128/Aem.00447-09.

    Article  CAS  Google Scholar 

  • Brodie, E. L., DeSantis, T. Z., Parker, J. P. M., Zubietta, I. X., Piceno, Y. M., & Andersen, G. L. (2007). Urban aerosols harbor diverse and dynamic bacterial populations. Proceedings of the National Academy of Sciences, USA, 104(1), 299–304.

    Article  CAS  Google Scholar 

  • Brown, J. K. M., & Hovmoller, M. S. (2002). Epidemiology—aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science, 297(5581), 537–541.

    Article  CAS  Google Scholar 

  • Burton, N. C., Grinshpun, S. A., & Reponen, T. (2007). Physical collection efficiency of filter materials for bacteria and viruses. The Annals of Occupational Hygiene, 51(2), 143–151. doi:10.1093/Annhyg/Mel073.

    CAS  Google Scholar 

  • Chao, A., Chazdon, R. L., Colwell, R. K., & Shen, T.-J. (2005). A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters, 8, 148–159.

    Article  Google Scholar 

  • Colwell, R. K. (2009). Estimates: Statistical estimation of species richness and shared species from samples. Version 8.2. User’s guide and application published at: http://purl.Oclc.Org/estimates.

  • Despres, V., Nowoisky, J., Klose, M., Conrad, R., Andreae, M. O., & Pöschl, U. (2007). Molecular genetics and diversity of primary biogenic aerosol particles in urban, rural, and high alpine air. Biogeosciences Discussion, 4, 349–384.

    Article  Google Scholar 

  • Fahlgren, C., Hagstrom, A., Nilsson, E. D., & Zweifel, U. L. (2010). Annual variation of the diversity, viability, and origin of airborne bacteria. Applied and Environmental Microbiology, 76, 3015–3025.

    Article  CAS  Google Scholar 

  • Fields, N. D., Oxborrow, G. S., Puleo, J. R., & Herring, C. M. (1974). Evaluation of membrane filter field monitors for microbiologial air sampling. Applied Microbiology, 27, 517–520.

    CAS  Google Scholar 

  • Fierer, N., Liu, Z. Z., Rodriguez-Hernandez, M., Knight, R., Henn, M., & Hernandez, M. T. (2008). Short-term temporal variability in airborne bacterial and fungal populations. Applied and Environmental Microbiology, 74(1), 200–207. doi:10.1128/Aem.01467-07.

    Article  CAS  Google Scholar 

  • Frohlich-Nowoisky, J., Pickersgill, D. A., Despres, V. R., & Poschl, U. (2009). High diversity of fungi in air particulate matter. Proceedings of the National Academy of Sciences, USA, 106(31), 12814–12819. doi:10.1073/Pnas.0811003106.

    Article  Google Scholar 

  • Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika, 40(3–4), 237–264.

    Google Scholar 

  • Griffin, D. W., Kellogg, C. A., Garrison, V. H., Lisle, J. T., Borden, T. C., & Shinn, E. A. (2003). Atmospheric microbiology in the Northern Caribbean during African dust events. Aerobiologia, 19, 143–157.

    Article  Google Scholar 

  • Hagström, Å., Pinhassi, J., & Zweifel, U. L. (2000). Biogeographical diversity among marine bacterioplankton. Aquatic Microbial Ecology, 21, 231–244.

    Article  Google Scholar 

  • Harrison, R. M., Jones, A. M., Biggins, P. D. E., Pomeroy, N., Cox, C. S., Kidd, S. P., et al. (2005). Climate factors influencing bacterial count in background air samples. International Journal of Biometeorology, 49(3), 167–178. doi:10.1007/S00484-004-0225-3.

    Article  Google Scholar 

  • Hervas, A., Camarero, L., Reche, I., & Casamayor, E. O. (2009). Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in Europe. Environmental Microbiology, 11(6), 1612–1623. doi:10.1111/J.1462-2920.2009.01926.X.

    Article  Google Scholar 

  • Jensen, P. A., Todd, W. F., Davis, G. N., & Scarpino, P. V. (1992). Evaluation of eight bioaersol samplers challenged with aerosols of free bacteria. American Industrial Hygiene Association Journal, 53, 660–667.

    CAS  Google Scholar 

  • Kellogg, C. A., & Griffin, D. W. (2006). Aerobiology and the global transport of desert dust. Trends in Ecology & Evolution, 21(11), 638–644. doi:10.1016/J.Tree.2006.07.004.

    Article  Google Scholar 

  • Kesavan, J., Bottiger, J. R., & McFarland, A. R. (2008). Bioaerosol concentrator performance: Comparative tests with viable and with solid and liquid nonviable particle. Journal of Applied Microbiology, 104, 285–295.

    CAS  Google Scholar 

  • Kesavan, J., Schepers, D., & McFarland, A. R. (2010). Sampling and retention efficiencies of batch-type liquid-based bioaerosol samplers. Aerosol Science and Technology, 44, 817–829.

    Article  CAS  Google Scholar 

  • King, M. D., Thien, B. F., Tiirikainen, S., & McFarland, A. R. (2009). Collection characteristics of a batch-type wetted wall bioaerosol sampling cyclone. Aerobiologia 25, 239–247.

    Google Scholar 

  • Lighthart, B. (1997). The ecology of bacteria in the alfresco atmosphere. FEMS Microbiology Ecology, 23, 263–274.

    Article  CAS  Google Scholar 

  • Lundholm, I. M. (1982). Comparison of methods for quantitative-determinations of airborne bacteria and evaluation of total viable counts. Applied and Environmental Microbiology, 44(1), 179–183.

    CAS  Google Scholar 

  • Maron, P. A., Lejon, D. P. H., Carvalho, E., Bizet, K., Lemanceau, P., Ranjard, L., et al. (2005). Assessing genetic structure and diversity of airborne bacterial communities by DNA fingerprinting and 16s rdna clone library. Atmospheric Environment, 39(20), 3687–3695. doi:10.1016/J.Atosenv.2005.03.002.

    Article  CAS  Google Scholar 

  • Möhler, O., DeMott, P. J., Vali, G., & Levin, Z. (2007). Microbiology and atmospheric processes: The role of biological particles in cloud physics. Biogeosciences, 4, 1059–1071.

    Article  Google Scholar 

  • Pommier, T., Canback, B., Riemann, L., Bostrom, K. H., Simu, K., Lundberg, P., et al. (2007). Global patterns of diversity and community structure in marine bacterioplankton. Molecular Ecology, 16(4), 867–880. doi:10.1111/J.1365-294x.2006.03189.X.

    Article  CAS  Google Scholar 

  • Porter, K. G., & Feig, Y. S. (1980). The use of dapi for identifying and counting aquatic microflora. Limnology and Oceanography, 25(5), 943–948.

    Article  Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(4), 623–656.

    Google Scholar 

  • Soltis, P. S., Soltis, D. E., & Doyle, J. J. (1998). Molecular systematics of plants ii: DNA sequencing. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). Molecular evolutionary genetics analysis (mega) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

    Article  CAS  Google Scholar 

  • Tormo, R., Recio, D., Silva, I., & Muñoz, A. F. (2001). A quantitative investigation of airborne algae and liche soredia obtained from pollen traps in South-West Spain. European Journal of Phycology, 36, 385–390.

    Article  Google Scholar 

  • Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16s ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697–703.

    CAS  Google Scholar 

  • Whyte, W., Green, G., & Albisu, A. (2007). Collection efficiency and design of microbial air samplers. Journal of Aerosol Science, 38, 101–114.

    Article  Google Scholar 

  • Wittmaack, K., Whnes, H., Heinzmann, U., & Agerer, R. (2005). An overview on bioaerosols viewed by scanning electron microscopy. Science of the Total Environment, 346, 244–255.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Hilde Kristiansen and Sabina Arnautovic are thanked for helping with sample collection. This work was financed by the Swedish Research Council for Environment, Agricultural Science and Spatial Planning (FORMAS), grant no. 214-2008-1113, by EU grant no. SEC6-PR-214400 (AEROBACTICS), and by the Research Council of Norway, grant no. 177802/V40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulla Li Zweifel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 328 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahlgren, C., Bratbak, G., Sandaa, RA. et al. Diversity of airborne bacteria in samples collected using different devices for aerosol collection. Aerobiologia 27, 107–120 (2011). https://doi.org/10.1007/s10453-010-9181-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-010-9181-z

Keywords

Navigation