Skip to main content
Log in

CONCEPTUAL DESIGN OF BESSEL BEAM CAVITY FOR FREE-ELECTRON LASER

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

The conventional cavity for a free-electron laser (FEL) oscillator usually forms an optical beam of Gaussian mode, which undergoes transverse spread along the interaction region. The transverse divergence of an optical beam will induce reduction of the FEL gain from three aspects: degenerating filling factor, causing diffraction loss and limiting the effective interaction distance. Bessel optical beam has been experimentally demonstrated diffraction-free characteristics in its propagation, which provides a possibility of improvement of FEL gain. In this paper, we present a conceptual design of a Bessel beam cavity for the free-electron laser oscillator. This cavity generates nondiffracting optical beam in the wiggler, resulting in improving the filling factor, decreasing the diffraction loss and elongating the effective interaction distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Durnin, J.J. Miceli, and J.H. Eberly, “Diffraction-fre beams”, Phys. Rev. Lett. 58, 1499 (1987)

    Article  ADS  Google Scholar 

  2. D. Li, K. Imasaki, “Vacuum laser-driven acceleration by two slits-truncated Bessel beams”, Appl. Phys. Lett. 87, 091106 (2005)

    Google Scholar 

  3. D. Li, K. Imasaki, “Vacuum laser-driven acceleration by a slits-truncated Bessel beam”, Appl. Phys. Lett. 86, 031110 (2005)

    Google Scholar 

  4. D. Li, K. Imasaki, “Laser-Bessel-beam-driven electron acceleration”, Jpn. J. Appl. Phys., 44, 6079 (2005)

    Article  ADS  Google Scholar 

  5. B. Hafizi, E. Esarey, P. Sprangle, “Laser-driven acceleration with Bessel beams”, Phys. Rev. E 55, 3539 (1997)

    Article  ADS  Google Scholar 

  6. D. Li, K. Imasaki, M. Aoki, “Application of Nondiffracting Laser Beam to Laser Compton Scattering”, J. Nucl. Sci. Tech. 32, 211 (2003)

    Google Scholar 

  7. KirkT. McDonald, http://arxiv.org/abs/physics/0006046

  8. G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis”, J. Opt. Soc. Am. A1, 150 (1989)

    Google Scholar 

  9. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory”, J. Opt. Soc. Am. A 4, 651 (1987)

    ADS  Google Scholar 

  10. A.J. Cox and Dean C. Dibble, “Nondiffracting beam from a spatially filtered Fabry-Perot resonator”, J. Opt. Soc. Am. A9, 282 (1992)

    ADS  Google Scholar 

  11. Marlan O. Scully, M.S. Zubairy, “Simple laser accelerator: Optics and particle dynamics”, Phys. Rev. A44, 2656 (1991)

    Article  ADS  Google Scholar 

  12. Zhiping Jiang, Qisheng Lu, and Zejin Liu, “Propagation of apertured Bessel beams”, Appl. Opt. 34, 7183 (1995)

    Article  ADS  Google Scholar 

  13. B. Hafizi, A.K. Ganguly, A. Ting, “Analysis of Gaussian beam and Bessel beam driven laser accelerators”, Phys. Rev. E60, 4779 (1999)

    ADS  Google Scholar 

  14. S. Miyamoto, T. Mochizuki, “Infrared free electron laser at Himeji Institute of Technology”, Jpn. Soc. IR. Sci. & Tech. 7,73 (1997)

    Google Scholar 

  15. A. Chesworth, The FEL Gain Equation (Issue 2), DL/EUFEL/99/05, 1999

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Imasaki, K., Miyamoto, S. et al. CONCEPTUAL DESIGN OF BESSEL BEAM CAVITY FOR FREE-ELECTRON LASER. Int J Infrared Milli Waves 27, 165–171 (2006). https://doi.org/10.1007/s10762-006-9067-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-006-9067-x

Keywords

Navigation