Skip to main content

Advertisement

Log in

Generation of Bessel Beams at mm- and Sub mm-wavelengths by Binary Optical Elements

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

In this paper, binary optical elements (BOE’s) are designed for generating Bessel beams at mm- and sub mm- wavelengths. The design tool is to combine a genetic algorithm (GA) for global optimization with a two-dimension finite-difference time-domain (2-D FDTD) method for rigorous electromagnetic computation. The design process for converting a normally incident Gaussian beam into a Bessel beam is described in detail. Numerical results demonstrate that the designed BOE’s can not only successfully produce arbitrary order Bessel beams, but also have higher diffraction efficiencies when compared with amplitude holograms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Durnin, Exact solutions for nondiffracting beams. I. The scalar theory. J. Opt. Soc. Am. A 4(4), 651–654 (1987).

    ADS  Google Scholar 

  2. J. Durnin, J. J. Miceli Jr., and J. H. Eberly, Diffraction-free beams. Phys. Rev. Lett 58(15), 1499–1501 (1987).

    Article  ADS  Google Scholar 

  3. D. Li, K. Imasaki, S. Miyamoto et al., Conceptual design of bessel beam cavity for free-electron laser. Int. J. Infrared Millim. Waves 27(2), 165–171 (2006).

    Article  MATH  ADS  Google Scholar 

  4. S. Monk, J. Arlt, D. A. Robertson et al., The generation of Bessel beams at millimetre-wave frequencies by use of an axicon. Opt. Commun 170, 213–215 (1999).

    Article  ADS  Google Scholar 

  5. R. J. Mahon, W. Lanigan, J. A. Murphy et al., Novel techniques for millimeter wave imaging systems operating at 100 GHz. Proc. SPIE Int. Soc. Opt. Eng 5789, 93–100 (2005).

    ADS  Google Scholar 

  6. J. Arlt, and K. Dholakia, Generation of high-order Bessel beams by use of an axicon. Opt. Commun 177, 297–301 (2000).

    Article  ADS  Google Scholar 

  7. J. Turunen, A. Vasara, and A. T. Friberg, Holographic generation of diffraction-free beams. Appl. Opt 27(19), 3959–3962 (1988).

    ADS  Google Scholar 

  8. A. Vasara, J. Turunen, and A. T. Friberg, Realization of general nondiffracting beams with computer-generated holograms. J. Opt. Soc. Am. A 6(11), 1748–1754 (1989).

    ADS  Google Scholar 

  9. A. J. Cox, and D. C. Dibble, Nondiffracting beam from a spatially filtered Fabry-Perot resonator. J. Opt. Soc. Am. A 9(2), 282–286 (1992).

    ADS  Google Scholar 

  10. R. M. Herman, and T. A. Wiggins, Production and uses of diffractionless beams. J. Opt. Soc. Am. A 8(6), 932–942 (1991).

    ADS  MathSciNet  Google Scholar 

  11. K. Thewes, M. A. Karim, and A. A. S. Awwal, Diffraction free beam generation using refracting systems. Opt. Laser Technol 23(2), 105–108 (1991).

    Article  ADS  Google Scholar 

  12. K. M. Iftekharuddin, A. A. S. Awwal, and M. K. Karim, Gaussian-to-Bessel beam transformation using a split refracting system. Appl. Opt 32(13), 2252–2256 (1992).

    ADS  Google Scholar 

  13. W. X. Cong, N. X. Chen, and B. Y. Gu, Generation of nondiffracting beams by diffractive phase elements. J. Opt. Soc. Am. A 15(9), 2362–2364 (1998).

    Article  ADS  Google Scholar 

  14. G. Y. Zhou, X. C. Yuan, P. Dowd et al., Diffractive optical elements designed by hybrid algorithm for the generation of nondiffraction beams. Proc. SPIE Int. Soc. Opt. Eng 4291, 148–156 (2001).

    Google Scholar 

  15. J. Salo, J. Meltaus, E. Noponen et al., Millimeter-wave Bessel beams using computer holograms. Electron. Lett 37(13), 834–835 (2001).

    Article  Google Scholar 

  16. J. Salo, J. Meltaus, E. Noponen et al., Holograms for shaping radio-wave fields. J. Opt. A, Pure Appl. Opt 4(5), S161–S167 (2002).

    Article  ADS  Google Scholar 

  17. J. Meltaus, J. Salo, E. Noponen et al., Radio-wave beam shaping using holograms, IEEE MTT-S Int. Microw. Symp. Dig., Seattle, WA, 1305–1308 (2002)

  18. J. Meltaus, J. Salo, E. Noponen et al., Millimeter-wave beam shaping using holograms. IEEE Trans. Microwave Theor. Tech 51(4), 1274–1279 (2003).

    Article  Google Scholar 

  19. J. Jiang, and G. P. Nordin, A rigorous unidirectional method for designing finite aperture diffractive optical elements. Opt. Express 7(6), 238–242 (2000).

    Article  ADS  Google Scholar 

  20. D. Eclercy, A. Reineix, and B. Jecko, FDTD genetic algorithm for antenna optimization. Microw. Opt. Technol. Lett 16(2), 72–74 (1997).

    Article  Google Scholar 

  21. Je. Kim, T. Yoon, Ja. Kim et al., Design of an ultra wide-band printed monopole antenna using FDTD and genetic algorithm. IEEE Microwave Compon. Lett 15(6), 395–397 (2005).

    Article  Google Scholar 

  22. R. W. Gerchberg, and W. O. Saxton, A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35(2), 227–246 (1972).

    Google Scholar 

  23. B. Gu, and G. Yang, On the phase retrieval problem in optical and electronic microscopy. Acta Opt. Sin 1(6), 517–522 (1981).

    Google Scholar 

  24. D. A. Pommet, M. G. Moharam, and E. Gram, Limits of scalar diffraction theory for diffractive phase elements. J. Opt. Soc. Am. A 11(6), 1827–1834 (1995).

    Article  ADS  Google Scholar 

  25. D. Feng, Y. B. Yan, G. F. Jin et al., Rigorous electromagnetic design of finite-aperture diffractive optical elements by use of an iterative optimization algorithm. J. Opt. Soc. Am. A 20(9), 1739–1745 (2003).

    Article  Google Scholar 

  26. K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media. IEEE Trans. Antennas Propag AP-14(3), 302–307 (1966).

    ADS  Google Scholar 

  27. J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys 114(2), 185–200 (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. R. L. Haupt, An introduction to genetic algorithms for electromagnetics. IEEE Antennas Propag. Mag. (USA) 37(2), 7–15 (1995).

    Article  ADS  Google Scholar 

  29. D. S. Weile, and E. Michielssen, Genetic algorithm optimization applied to electromagnetics: A review. IEEE Trans. Antennas Propag 45(3), 343–353 (1997).

    Article  ADS  Google Scholar 

  30. G. Zhou, Y. Chen, Z. Wang, and H. Song, Genetic local search algorithm for optimization design of diffractive optical elements. Appl. Opt 38(20), 4281–4290 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Astronomy United Foundation of National Natural Science Foundation of China, Chinese Academy of Sciences (No. 10778602) and the Natural Science Foundation of Fujian Province of China (No.A0610027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Z. Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y.Z., Dou, W.B. Generation of Bessel Beams at mm- and Sub mm-wavelengths by Binary Optical Elements. Int J Infrared Milli Waves 29, 693–703 (2008). https://doi.org/10.1007/s10762-008-9365-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-008-9365-6

Keywords

Navigation