Skip to main content

Advertisement

Log in

Cell–cell Signaling in the Neurovascular Unit

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Historically, the neuron has been the conceptual focus for almost all of neuroscience research. In recent years, however, the concept of the neurovascular unit has emerged as a new paradigm for investigating both physiology and pathology in the CNS. This concept proposes that a purely neurocentric focus is not sufficient, and emphasizes that all cell types in the brain including neuronal, glial and vascular components, must be examined in an integrated context. Cell–cell signaling and coupling between these different compartments form the basis for normal function. Disordered signaling and perturbed coupling form the basis for dysfunction and disease. In this mini-review, we will survey four examples of this phenomenon: hemodynamic neurovascular coupling linking blood flow to brain activity; cellular communications that evoke the blood–brain barrier phenotype; parallel systems that underlie both neurogenesis and angiogenesis in the CNS; and finally, the potential exchange of trophic factors that may link neuronal, glial and vascular homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53

    PubMed  CAS  Google Scholar 

  2. Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5:347–360

    PubMed  CAS  Google Scholar 

  3. Park JA, Choi KS, Kim SY, Kim KW (2003) Coordinated interaction of the vascular and nervous systems: from molecule- to cell-based approaches. Biochem Biophys Res Commun 311:247–253

    PubMed  CAS  Google Scholar 

  4. Allan S (2006) The neurovascular unit and the key role of astrocytes in the regulation of cerebral blood flow. Cerebrovasc Dis 21:137–138

    PubMed  Google Scholar 

  5. Hawkins BT, Davis TP (2005) The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185

    PubMed  CAS  Google Scholar 

  6. Lo EH, Broderick JP, Moskowitz MA (2004) tPA and proteolysis in the neurovascular unit. Stroke 35:354–356

    PubMed  Google Scholar 

  7. Drake CT, Iadecola C (2006) The role of neuronal signaling in controlling cerebral blood flow. Brain Lang, doi:10.1016/j.bandl.2006.08.002

  8. Lassen NA, Larsen B (1980) Cortical activity in the left and right hemispheres during language-related brain functions. Phonetica 37:27–37

    Article  PubMed  CAS  Google Scholar 

  9. Foit A, Larsen B, Hattori S, Skinhoj E, Lassen NA (1980) Cortical activation during somatosensory stimulation and voluntary movement in man: a regional cerebral blood flow study. Electroencephalogr Clin Neurophysiol 50:426–436

    PubMed  CAS  Google Scholar 

  10. Hougaard K, Oikawa T, Sveinsdottir E, Skinoj E, Ingvar DH, Lassen NA (1976) Regional cerebral blood flow in focal cortical epilepsy. Arch Neurol 33:527–535

    PubMed  CAS  Google Scholar 

  11. Jones EG (1970) On the mode of entry of blood vessels into the cerebral cortex. J Anat 106:507–520

    PubMed  CAS  Google Scholar 

  12. Edvinsson L, Hamel E (2002) Perivascular nerves in brain vessels. In: Edvinsson L, Krause DN (eds) Cerebral blood flow and metabolism. Lippincott, Williams and Wilkins, Philadelphia, pp 43–67

    Google Scholar 

  13. Iadecola C (1998) Cerebral circulatory dysregulation in ischemia. In: Ginsberg D, Bogousslavsky J (eds) Cerebrovascular diseases. Blackwell Science, Cambridge, MA, pp 319–322

    Google Scholar 

  14. Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9:260–267

    PubMed  CAS  Google Scholar 

  15. Cohen Z, Bonvento G, Lacombe P, Hamel E (1996) Serotonin in the regulation of brain microcirculation. Prog Neurobiol 50:335–362

    PubMed  CAS  Google Scholar 

  16. Rennels ML, Nelson E (1975) Capillary innervation in the mammalian central nervous system: an electron microscopic demonstration. Am J Anat 144:233–241

    PubMed  CAS  Google Scholar 

  17. Maynard EA, Schultz RL, Pease DC (1957) Electron microscopy of the vascular bed of rat cerebral cortex. Am J Anat 100:409–433

    PubMed  CAS  Google Scholar 

  18. Hirase H (2005) A multi-photon window onto neuronal-glial-vascular communication. Trends Neurosci 28:217–219

    PubMed  CAS  Google Scholar 

  19. Mulligan SJ, MacVicar BA (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431:195–199

    PubMed  CAS  Google Scholar 

  20. Zonta M, Sebelin A, Gobbo S, Fellin T, Pozzan T, Carmignoto G (2003) Glutamate-mediated cytosolic calcium oscillations regulate a pulsatile prostaglandin release from cultured rat astrocytes. J Physiol 553:407–414

    PubMed  CAS  Google Scholar 

  21. Busija DW (1993) Cerebral autoregulation. In: Philis JW (ed) The regulation of cerebral blood flow. CRC Press, Boca Raton, pp 45–64

    Google Scholar 

  22. Fergus A, Lee KS (1997) GABAergic regulation of cerebral microvascular tone in the rat. J Cereb Blood Flow Metab 17:992–1003

    PubMed  CAS  Google Scholar 

  23. Iadecola C (1998) Neurogenic control of the cerebral microcirculation: is dopamine minding the store? Nat Neurosci 1:263–265

    PubMed  CAS  Google Scholar 

  24. Uddman R, Edvinsson L (1989) Neuropeptides in the cerebral circulation. Cerebrovasc Brain Metab Rev 1:230–252

    PubMed  CAS  Google Scholar 

  25. Bhardwaj A, Northington FJ, Carhuapoma JR, Falck JR, Harder DR, Traystman RJ, Koehler RC (2000) P-450 epoxygenase and NO synthase inhibitors reduce cerebral blood flow response to N-methyl-d-aspartate. Am J Physiol Heart Circ Physiol 279: H1616–H1624

    PubMed  CAS  Google Scholar 

  26. Buerk DG, Atochin DN, Riva CE (2003) Investigating the role of nitric oxide in regulating blood flow and oxygen delivery from in vivo electrochemical measurements in eye and brain. Adv Exp Med Biol 530:359–370

    PubMed  CAS  Google Scholar 

  27. Faraci FM, Brian JE Jr (1995) 7-Nitroindazole inhibits brain nitric oxide synthase and cerebral vasodilatation in response to N-methyl-d-aspartate. Stroke 26:2172–2175; discussion 2176

    Google Scholar 

  28. Zhang F, Xu S, Iadecola C (1995) Role of nitric oxide and acetylcholine in neocortical hyperemia elicited by basal forebrain stimulation: evidence for an involvement of endothelial nitric oxide. Neuroscience 69:1195–1204

    PubMed  CAS  Google Scholar 

  29. Wu DM, Kawamura H, Sakagami K, Kobayashi M, Puro DG (2003) Cholinergic regulation of pericyte-containing retinal microvessels. Am J Physiol Heart Circ Physiol 284:H2083–H2090

    PubMed  CAS  Google Scholar 

  30. Filosa JA, Bonev AD, Straub SV, Meredith AL, Wilkerson MK, Aldrich RW, Nelson MT (2006) Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat Neurosci 9:1397–1403

    PubMed  CAS  Google Scholar 

  31. Sokoya EM, Burns AR, Setiawan CT, Coleman HA, Parkington HC, Tare M (2006) Evidence for the involvement of myoendothelial gap junctions in EDHF-mediated relaxation in the rat middle cerebral artery. Am J Physiol Heart Circ Physiol 291: H385–H393

    PubMed  CAS  Google Scholar 

  32. Cox SB, Woolsey TA, Rovainen CM (1993) Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels. J Cereb Blood Flow Metab 13:899–913

    PubMed  CAS  Google Scholar 

  33. Erinjeri JP, Woolsey TA (2002) Spatial integration of vascular changes with neural activity in mouse cortex. J Cereb Blood Flow Metab 22:353–360

    PubMed  Google Scholar 

  34. Ngai AC, Ko KR, Morii S, Winn HR (1988) Effect of sciatic nerve stimulation on pial arterioles in rats. Am J Physiol 254:H133–H139

    PubMed  CAS  Google Scholar 

  35. Busse R, Fleming I (2003) Regulation of endothelium-derived vasoactive autacoid production by hemodynamic forces. Trends Pharmacol Sci 24:24–29

    PubMed  CAS  Google Scholar 

  36. Peppiatt CM, Howarth C, Mobbs P, Attwell D (2006) Bidirectional control of CNS capillary diameter by pericytes. Nature 443:700–704

    PubMed  CAS  Google Scholar 

  37. Pelligrino DA (2006) Regulation of the cerebral circulation. J Appl Physiol 100:3–4

    PubMed  Google Scholar 

  38. Mintun MA, Lundstrom BN, Snyder AZ, Vlassenko AG, Shulman GL, Raichle ME (2001) Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data. Proc Natl Acad Sci USA 98:6859–6864

    PubMed  CAS  Google Scholar 

  39. Powers WJ, Hirsch IB, Cryer PE (1996) Effect of stepped hypoglycemia on regional cerebral blood flow response to physiological brain activation. Am J Physiol 270:H554–H559

    PubMed  CAS  Google Scholar 

  40. Gotoh J, Kuang TY, Nakao Y, Cohen DM, Melzer P, Itoh Y, Pak H, Pettigrew K, Sokoloff L (2001) Regional differences in mechanisms of cerebral circulatory response to neuronal activation. Am J Physiol Heart Circ Physiol 280:H821–H829

    PubMed  CAS  Google Scholar 

  41. Koehler RC, Gebremedhin D, Harder DR (2006) Role of astrocytes in cerebrovascular regulation. J Appl Physiol 100:307–317

    PubMed  CAS  Google Scholar 

  42. White RP, Hindley C, Bloomfield PM, Cunningham VJ, Vallance P, Brooks DJ, Markus HS (1999) The effect of the nitric oxide synthase inhibitor L-NMMA on basal CBF and vasoneuronal coupling in man: a PET study. J Cereb Blood Flow Metab 19:673–678

    PubMed  CAS  Google Scholar 

  43. Newman EA (2003) New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci 26:536–542

    PubMed  CAS  Google Scholar 

  44. Ngai AC, Coyne EF, Meno JR, West GA, Winn HR (2001) Receptor subtypes mediating adenosine-induced dilation of cerebral arterioles. Am J Physiol Heart Circ Physiol 280:H2329–H2335

    PubMed  CAS  Google Scholar 

  45. Shin HK, Shin YW, Hong KW (2000) Role of adenosine A(2B) receptors in vasodilation of rat pial artery and cerebral blood flow autoregulation. Am J Physiol Heart Circ Physiol 278: H339–H344

    PubMed  CAS  Google Scholar 

  46. Saez JC, Retamal MA, Basilio D, Bukauskas FF, Bennett MV (2005) Connexin-based gap junction hemichannels: gating mechanisms. Biochim Biophys Acta 1711:215–224

    PubMed  CAS  Google Scholar 

  47. Stout CE, Costantin JL, Naus CC, Charles AC (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277:10482–10488

    PubMed  CAS  Google Scholar 

  48. Alloisio S, Cugnoli C, Ferroni S, Nobile M (2004) Differential modulation of ATP-induced calcium signalling by A1 and A2 adenosine receptors in cultured cortical astrocytes. Br J Pharmacol 141:935–942

    PubMed  CAS  Google Scholar 

  49. Jimenez AI, Castro E, Mirabet M, Franco R, Delicado EG, Miras-Portugal MT (1999) Potentiation of ATP calcium responses by A2B receptor stimulation and other signals coupled to Gs proteins in type-1 cerebellar astrocytes. Glia. 26:119–128

    PubMed  CAS  Google Scholar 

  50. Peakman MC, Hill SJ (1994) Adenosine A2B-receptor-mediated cyclic AMP accumulation in primary rat astrocytes. Br J Pharmacol 111:191–198

    PubMed  CAS  Google Scholar 

  51. Allaman I, Lengacher S, Magistretti PJ, Pellerin L (2003) A2B receptor activation promotes glycogen synthesis in astrocytes through modulation of gene expression. Am J Physiol Cell Physiol 284:C696–C704

    PubMed  CAS  Google Scholar 

  52. Pilitsis JG, Kimelberg HK (1998) Adenosine receptor mediated stimulation of intracellular calcium in acutely isolated astrocytes. Brain Res 798:294–303

    PubMed  CAS  Google Scholar 

  53. Krimer LS, Muly EC 3rd, Williams GV, Goldman-Rakic PS (1998) Dopaminergic regulation of cerebral cortical microcirculation. Nat Neurosci 1:286–289

    PubMed  CAS  Google Scholar 

  54. Niwa K, Araki E, Morham SG, Ross ME, Iadecola C (2000) Cyclooxygenase-2 contributes to functional hyperemia in whisker-barrel cortex. J Neurosci 20:763–770

    PubMed  CAS  Google Scholar 

  55. Niwa K, Haensel C, Ross ME, Iadecola C (2001) Cyclooxygenase-1 participates in selected vasodilator responses of the cerebral circulation. Circ Res 88:600–608

    PubMed  CAS  Google Scholar 

  56. Verbeek MM, de Waal RM, Schipper JJ, Van Nostrand WE (1997) Rapid degeneration of cultured human brain pericytes by amyloid beta protein. J Neurochem 68:1135–1141

    Article  PubMed  CAS  Google Scholar 

  57. Hirase T, Staddon JM, Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, Fujimoto K, Tsukita S, Rubin LL (1997) Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci 110 (Pt 14):1603–1613

    PubMed  CAS  Google Scholar 

  58. Estrada C, Bready JV, Berliner JA, Pardridge WM, Cancilla PA (1990) Astrocyte growth stimulation by a soluble factor produced by cerebral endothelial cells in vitro. J Neuropathol Exp Neurol 49:539–549

    PubMed  CAS  Google Scholar 

  59. Mi H, Haeberle H, Barres BA (2001) Induction of astrocyte differentiation by endothelial cells. J Neurosci 21:1538–1547

    PubMed  CAS  Google Scholar 

  60. Mizuguchi H, Utoguchi N, Mayumi T (1997) Preparation of glial extracellular matrix: a novel method to analyze glial-endothelial cell interaction. Brain Res Brain Res Protoc 1:339–343

    PubMed  CAS  Google Scholar 

  61. Schroeter ML, Mertsch K, Giese H, Muller S, Sporbert A, Hickel B, Blasig IE (1999) Astrocytes enhance radical defence in capillary endothelial cells constituting the blood–brain barrier. FEBS Lett 449:241–244

    PubMed  CAS  Google Scholar 

  62. Regina A, Morchoisne S, Borson ND, McCall AL, Drewes LR, Roux F (2001) Factor(s) released by glucose-deprived astrocytes enhance glucose transporter expression and activity in rat brain endothelial cells. Biochim Biophys Acta 1540:233–242

    PubMed  CAS  Google Scholar 

  63. Braet K, Cabooter L, Paemeleire K, Leybaert L (2004) Calcium signal communication in the central nervous system. Biol Cell 96:79–91

    PubMed  CAS  Google Scholar 

  64. Leybaert L, Cabooter L, Braet K (2004) Calcium signal communication between glial and vascular brain cells. Acta Neurol Belg 104:51–56

    PubMed  Google Scholar 

  65. Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4:702–710

    PubMed  CAS  Google Scholar 

  66. Hansson E, Ronnback L (2003) Glial neuronal signaling in the central nervous system. Faseb J 17:341–348

    PubMed  CAS  Google Scholar 

  67. Huber JD, Egleton RD, Davis TP (2001) Molecular physiology and pathophysiology of tight junctions in the blood–brain barrier. Trends Neurosci 24:719–725

    PubMed  CAS  Google Scholar 

  68. Pardrige WM (2003) Molecular biology of the blood brain barrier. In: The blood brain barrier. Humana Press, Totowa, NJ, pp 385–397

  69. Lee G, Bendayan R (2004) Functional expression and localization of P-glycoprotein in the central nervous system: relevance to the pathogenesis and treatment of neurological disorders. Pharm Res 21:1313–1330

    PubMed  CAS  Google Scholar 

  70. Berzin TM, Zipser BD, Rafii MS, Kuo-Leblanc V, Yancopoulos GD, Glass DJ, Fallon JR, Stopa EG (2000) Agrin and microvascular damage in Alzheimer’s disease. Neurobiol Aging 21:349–355

    PubMed  CAS  Google Scholar 

  71. Kalaria RN (1999) The blood–brain barrier and cerebrovascular pathology in Alzheimer’s disease. Ann N Y Acad Sci 893:113–125

    PubMed  CAS  Google Scholar 

  72. Kortekaas R, Leenders KL, van Oostrom JC, Vaalburg W, Bart J, Willemsen AT, Hendrikse NH (2005) Blood–brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 57:176–179

    PubMed  CAS  Google Scholar 

  73. Minagar A, Alexander JS (2003) Blood–brain barrier disruption in multiple sclerosis. Mult Scler 9:540–549

    PubMed  CAS  Google Scholar 

  74. Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote EH, Risau W, Engelhardt B (2003) Localization of claudin-3 in tight junctions of the blood–brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol (Berl) 105:586–592

    CAS  Google Scholar 

  75. Abbott NJ (2002) Astrocyte-endothelial interactions and blood–brain barrier permeability. J Anat 200:629–638

    PubMed  CAS  Google Scholar 

  76. Marroni M, Marchi N, Cucullo L, Abbott NJ, Signorelli K, Janigro D (2003) Vascular and parenchymal mechanisms in multiple drug resistance: a lesson from human epilepsy. Curr Drug Targets 4:297–304

    PubMed  CAS  Google Scholar 

  77. Davies DC (2002) Blood–brain barrier breakdown in septic encephalopathy and brain tumours. J Anat 200:639–646

    PubMed  CAS  Google Scholar 

  78. Liebner S, Fischmann A, Rascher G, Duffner F, Grote EH, Kalbacher H, Wolburg H (2000) Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol (Berl) 100:323–331

    CAS  Google Scholar 

  79. Warth A, Kroger S, Wolburg H (2004) Redistribution of aquaporin-4 in human glioblastoma correlates with loss of agrin immunoreactivity from brain capillary basal laminae. Acta Neuropathol (Berl) 107:311–318

    CAS  Google Scholar 

  80. Carmeliet P (2003) Blood vessels and nerves: common signals, pathways and diseases. Nat Rev Genet 4:710–720

    PubMed  CAS  Google Scholar 

  81. Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494

    PubMed  CAS  Google Scholar 

  82. Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA 99:11946–11950

    PubMed  CAS  Google Scholar 

  83. Jin KL, Mao XO, Greenberg DA (2000) Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci USA 97:10242–10247

    PubMed  CAS  Google Scholar 

  84. Matsuzaki H, Tamatani M, Yamaguchi A, Namikawa K, Kiyama H, Vitek MP, Mitsuda N, Tohyama M (2001) Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: signal transduction cascades. Faseb J 15:1218–1220

    PubMed  CAS  Google Scholar 

  85. Ogunshola OO, Antic A, Donoghue MJ, Fan SY, Kim H, Stewart WB, Madri JA, Ment LR (2002) Paracrine and autocrine functions of neuronal vascular endothelial growth factor (VEGF) in the central nervous system. J Biol Chem 277:11410–11415

    PubMed  CAS  Google Scholar 

  86. Silverman WF, Krum JM, Mani N, Rosenstein JM (1999) Vascular, glial and neuronal effects of vascular endothelial growth factor in mesencephalic explant cultures. Neuroscience 90:1529–1541

    PubMed  CAS  Google Scholar 

  87. Bagnard D, Vaillant C, Khuth ST, Dufay N, Lohrum M, Puschel AW, Belin MF, Bolz J, Thomasset N (2001) Semaphorin 3A-vascular endothelial growth factor-165 balance mediates migration and apoptosis of neural progenitor cells by the recruitment of shared receptor. J Neurosci 21:3332–3341

    PubMed  CAS  Google Scholar 

  88. Miao HQ, Soker S, Feiner L, Alonso JL, Raper JA, Klagsbrun M (1999) Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility: functional competition of collapsin-1 and vascular endothelial growth factor-165. J Cell Biol 146:233–242

    PubMed  CAS  Google Scholar 

  89. Ciccolini F, Svendsen CN (1998) Fibroblast growth factor 2 (FGF-2) promotes acquisition of epidermal growth factor (EGF) responsiveness in mouse striatal precursor cells: identification of neural precursors responding to both EGF and FGF-2. J Neurosci 18:7869–7880

    PubMed  CAS  Google Scholar 

  90. Gage FH, Coates PW, Palmer TD, Kuhn HG, Fisher LJ, Suhonen JO, Peterson DA, Suhr ST, Ray J (1995) Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc Natl Acad Sci USA 92:11879–11883

    PubMed  CAS  Google Scholar 

  91. Gritti A, Parati EA, Cova L, Frolichsthal P, Galli R, Wanke E, Faravelli L, Morassutti DJ, Roisen F, Nickel DD, Vescovi AL (1996) Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci 16:1091–1100

    PubMed  CAS  Google Scholar 

  92. Kilpatrick TJ, Bartlett PF (1995) Cloned multipotential precursors from the mouse cerebrum require FGF-2, whereas glial restricted precursors are stimulated with either FGF-2 or EGF. J Neurosci 15:3653–3661

    PubMed  CAS  Google Scholar 

  93. Palmer TD, Takahashi J, Gage FH (1997) The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci 8:389–404

    PubMed  CAS  Google Scholar 

  94. Tao Y, Black IB, DiCicco-Bloom E (1996) Neurogenesis in neonatal rat brain is regulated by peripheral injection of basic fibroblast growth factor (bFGF). J Comp Neurol 376:653–663

    PubMed  CAS  Google Scholar 

  95. Wagner JP, Black IB, DiCicco-Bloom E (1999) Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor. J Neurosci 19:6006–6016

    PubMed  CAS  Google Scholar 

  96. Barres BA, Schmid R, Sendnter M, Raff MC (1993) Multiple extracellular signals are required for long-term oligodendrocyte survival. Development 118:283–295

    PubMed  CAS  Google Scholar 

  97. Cameron HA, Hazel TG, McKay RD (1998) Regulation of neurogenesis by growth factors and neurotransmitters. J Neurobiol 36:287–306

    PubMed  CAS  Google Scholar 

  98. Wolswijk G, Riddle PN, Noble M (1991) Platelet-derived growth factor is mitogenic for O-2Aadult progenitor cells. Glia 4:495–503

    PubMed  CAS  Google Scholar 

  99. Ward NL, Lamanna JC (2004) The neurovascular unit and its growth factors: coordinated response in the vascular and nervous systems. Neurol Res 26:870–883

    PubMed  CAS  Google Scholar 

  100. Coulthard MG, Duffy S, Down M, Evans B, Power M, Smith F, Stylianou C, Kleikamp S, Oates A, Lackmann M, Burns GF, Boyd AW (2002) The role of the Eph-ephrin signalling system in the regulation of developmental patterning. Int J Dev Biol 46:375–384

    PubMed  CAS  Google Scholar 

  101. Knoll B, Drescher U (2002) Ephrin-As as receptors in topographic projections. Trends Neurosci 25:145–149

    PubMed  CAS  Google Scholar 

  102. Gerety SS, Wang HU, Chen ZF, Anderson DJ (1999) Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell 4:403–414

    PubMed  CAS  Google Scholar 

  103. Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93:741–753

    PubMed  CAS  Google Scholar 

  104. Wilson BD, Ii M, Park KW, Suli A, Sorensen LK, Larrieu-Lahargue F, Urness LD, Suh W, Asai J, Kock GA, Thorne T, Silver M, Thomas KR, Chien CB, Losordo DW, Li DY (2006) Netrins promote developmental and therapeutic angiogenesis. Science 313:640–644

    PubMed  CAS  Google Scholar 

  105. Gassmann M, Lemke G (1997) Neuregulins and neuregulin receptors in neural development. Curr Opin Neurobiol 7:87–92

    PubMed  CAS  Google Scholar 

  106. Russell KS, Stern DF, Polverini PJ, Bender JR (1999) Neuregulin activation of ErbB receptors in vascular endothelium leads to angiogenesis. Am J Physiol 277:H2205–H2211

    PubMed  CAS  Google Scholar 

  107. Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P (1998) Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141:1659–1673

    PubMed  CAS  Google Scholar 

  108. Pepper MS, Mandriota SJ (1998) Regulation of vascular endothelial growth factor receptor-2 (Flk-1) expression in vascular endothelial cells. Exp Cell Res 241:414–425

    PubMed  CAS  Google Scholar 

  109. Cobbs CS, Chen J, Greenberg DA, Graham SH (1998) Vascular endothelial growth factor expression in transient focal cerebral ischemia in the rat. Neurosci Lett 249:79–82

    PubMed  CAS  Google Scholar 

  110. Krum JM, Rosenstein JM (1998) VEGF mRNA and its receptor flt-1 are expressed in reactive astrocytes following neural grafting and tumor cell implantation in the adult CNS. Exp Neurol 154:57–65

    PubMed  CAS  Google Scholar 

  111. Kuwaki T, Kurihara H, Cao WH, Kurihara Y, Unekawa M, Yazaki Y, Kumada M (1997) Physiological role of brain endothelin in the central autonomic control: from neuron to knockout mouse. Prog Neurobiol 51:545–579

    PubMed  CAS  Google Scholar 

  112. Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL (1999) Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283:534–537

    PubMed  CAS  Google Scholar 

  113. Liu J, Solway K, Messing RO, Sharp FR (1998) Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci 18:7768–7778

    PubMed  CAS  Google Scholar 

  114. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970

    PubMed  CAS  Google Scholar 

  115. Parent JM, Vexler ZS, Gong C, Derugin N, Ferriero DM (2002) Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 52:802–813

    PubMed  Google Scholar 

  116. Lee SR, Kim HY, Rogowska J, Zhao BQ, Bhide P, Parent JM, Lo EH (2006) Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke. J Neurosci 26:3491–3495

    PubMed  CAS  Google Scholar 

  117. Zhao BQ, Wang S, Kim HY, Storrie H, Rosen BR, Mooney DJ, Wang X, Lo EH (2006) Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med 12:441–445

    PubMed  CAS  Google Scholar 

  118. Wang L, Zhang Z, Zhang R, Hafner MS, Wong HK, Jiao Z, Chopp M (2004) Erythropoietin up-regulates SOCS2 in neuronal progenitor cells derived from SVZ of adult rat. Neuroreport 15:1225–1229

    PubMed  CAS  Google Scholar 

  119. Shyu WC, Lin SZ, Yang HI, Tzeng YS, Pang CY, Yen PS, Li H (2004) Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation 110:1847–1854

    PubMed  CAS  Google Scholar 

  120. Chen J, Zacharek A, Zhang C, Jiang H, Li Y, Roberts C, Lu M, Kapke A, Chopp M (2005) Endothelial nitric oxide synthase regulates brain-derived neurotrophic factor expression and neurogenesis after stroke in mice. J Neurosci 25:2366–2375

    PubMed  CAS  Google Scholar 

  121. Weston GC, Haviv I, Rogers PA (2002) Microarray analysis of VEGF-responsive genes in myometrial endothelial cells. Mol Hum Reprod 8:855–863

    PubMed  CAS  Google Scholar 

  122. Leventhal C, Rafii S, Rafii D, Shahar A, Goldman SA (1999) Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol Cell Neurosci 13:450–464

    PubMed  CAS  Google Scholar 

  123. Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304:1338–1340

    PubMed  CAS  Google Scholar 

  124. Stankovic K, Rio C, Xia A, Sugawara M, Adams JC, Liberman MC, Corfas G (2004) Survival of adult spiral ganglion neurons requires erbB receptor signaling in the inner ear. J Neurosci 24:8651–8661

    PubMed  CAS  Google Scholar 

  125. Esper RM, Loeb JA (2004) Rapid axoglial signaling mediated by neuregulin and neurotrophic factors. J Neurosci 24:6218–6227

    PubMed  CAS  Google Scholar 

  126. Fekete DM, Wu DK (2002) Revisiting cell fate specification in the inner ear. Curr Opin Neurobiol 12:35–42

    PubMed  CAS  Google Scholar 

  127. Nakamura K, Martin KC, Jackson JK, Beppu K, Woo CW, Thiele CJ (2006) Brain-derived neurotrophic factor activation of TrkB induces vascular endothelial growth factor expression via hypoxia-inducible factor-1alpha in neuroblastoma cells. Cancer Res 66:4249–4255

    PubMed  CAS  Google Scholar 

  128. Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438:1017–1021

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funded in part by NIH grants R01-NS37074, R01-NS40529, R01-NS48422, R01-NS53560, R01-NS56458, R01-NS47447, P50-NS10828, P01-NS55104, and a Bugher award from the American Heart Association. Many of the ideas presented here come from many leaders in the field. Key concepts were derived from seminal reviews in the area, especially the following: Abbott, N.J. et al, J of Biochemistry and Molecular Biology 2006; Carmeliet, P., Nature Reviews Genetics 2003 ; Drake, C.T. et al, Brain and Language 2006; Kim, J.H. et al, J of Biochemistry and Molecular Biology 2006; Iadecola, C., Nature Reviews Neuroscience 2004; Park, J.A. et al, Biochem Biophys Res Commun 2003; Pelligrino, D.A., J. Appl Physiol 2006; Ward, N.L. et al, Neurological Research 2004. We apologize to our many colleagues whose work we could not directly acknowledge due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eng H. Lo.

Additional information

Special issue in honor of Naren Banik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lok, J., Gupta, P., Guo, S. et al. Cell–cell Signaling in the Neurovascular Unit. Neurochem Res 32, 2032–2045 (2007). https://doi.org/10.1007/s11064-007-9342-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9342-9

Keywords

Navigation