Skip to main content

Advertisement

Log in

Tracing metabolite profiles in human milk: studies on the odorant 1,8-cineole transferred into breast milk after oral intake

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

The transfer of certain substances from the maternal diet or medication into breast milk has been known for many years. There is currently also an increasing interest in odorants in human milk and their potential influence on the breastfed child. Nevertheless, metabolic products originating from bioconversion of odorants within the maternal organism have hitherto not been considered. Breastfed children may take in xenobiotic compounds that are transferred unmodified into human milk, but also their metabolic derivatives. Metabolic activation is a crucial point for evaluation of both positive and negative biological effects, thus it is important to understand the basic principles of metabolism in human milk. The present study investigated metabolite profiles of the odorant 1,8-cineole (eucalyptol) in human milk after lactating mothers ingested a non-prescription pharmaceutical (Soledum®) containing this substance. Ten different metabolites were identified, five of which have been previously described in humans and other mammals (α2-hydroxy-1,8-cineole, β2-hydroxy-1,8-cineole, α3-hydroxy-1,8-cineole, 7-hydroxy-1,8-cineole, 9-hydroxy-1,8-cineole). Three of the metabolites have hitherto only been found in microorganisms and insects (2-oxo-1,8-cineole, 3-oxo-1,8-cineole, 2,3-dehydro-1,8-cineole) and the derivatives α2,3-epoxy-1,8-cineole and 4-hydroxy-1,8-cineole have never before been identified as metabolites of 1,8-cineole. Metabolism profiles showed large inter- and intra-individual differences and were strongly related to sampling time. Identification and relative quantification of the metabolites were accomplished by gas chromatography–mass spectrometry (GC–MS) after preparation of the human milk extracts by solvent assisted flavour evaporation (SAFE). Synthesised reference substances were used to confirm the chemical identity of the detected substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arena, J. M. (1970). Contamination of the ideal food. Nutrition Today, 5(4), 2–8.

    Article  Google Scholar 

  • Ayorinde, F. O., Wheeler, J. W., & Duffield, R. M. (1984). Synthesis of dehydrocineole, a new monoterpene from the acarid mite, caloglyphus-rodriguezi (arachnida, acari). Tetrahedron Letters, 25(33), 3525–3528.

    Article  CAS  Google Scholar 

  • Bemelmans, J. M. H. (1979). Review of isolation and concentration techniques. In D. G. Land & H. E. Nursten (Eds.), Progress in flavour research (pp. 79–88). London: Applied Science Publishers.

    Google Scholar 

  • Berlin, C. M., & Briggs, G. G. (2005). Drugs and chemicals in human milk. Seminars in Fetal and Neonatal Medicine, 10(2), 149–159.

    Article  PubMed  Google Scholar 

  • Boyle, R., McLean, S., & Davies, N. W. (2000). Biotransformation of 1,8-cineole in the brushtail possum (trichosurus vulpecula). Xenobiotica, 30(9), 915–932.

    Article  PubMed  CAS  Google Scholar 

  • Boyle, R., McLean, S., Foley, W., Davies, N. W., Peacock, E. J., & Moore, B. (2001). Metabolites of dietary 1,8-cineole in the male koala (Phascolarctos cinereus). Comparative Biochemistry and Physiology C: Toxicology & Pharmacology, 129(4), 385–395.

    Article  CAS  Google Scholar 

  • Carman, R. M., & Garner, A. C. (1996). 7,9-Dihydroxy-1,8-cineole and 2α,7-dihydroxy-1,8-cineole: Two new possum urinary metabolites. Australian Journal of Chemistry, 49(7), 741–749.

    CAS  Google Scholar 

  • Carman, R. M., & Rayner, A. C. (1994a). 2α,4-Dihydroxy-1,8-cineole. A new possum urinary metabolite. Australian Journal of Chemistry, 47(11), 2087–2097.

    Article  CAS  Google Scholar 

  • Carman, R. M., & Rayner, A. C. (1994b). The diepoxides of terpinolene. Australian Journal of Chemistry, 47(2), 195–202.

    Article  CAS  Google Scholar 

  • Carman, R. M., & Rayner, A. C. (1996). Chiral 2α,4-dihydroxy-1,8-cineole as a possum urinary metabolite. Australian Journal of Chemistry, 49(1), 1–6.

    CAS  Google Scholar 

  • Carman, R. M., Garner, A. C., & Klika, K. D. (1994). 2,9-Dihydroxy-1,8-cineole and 2,10-dihydroxy-1,8-cineole: Two new possum urinary metabolites. Australian Journal of Chemistry, 47(8), 1509–1521.

    Article  CAS  Google Scholar 

  • Carman, R. M., Robinson, W. T., & Wallis, C. J. (2005). The 3-hydroxycineoles. Australian Journal of Chemistry, 58(11), 785–791. doi:10.1071/ch05144.

    Article  CAS  Google Scholar 

  • de Vincenzi, M., Silano, M., de Vincenzi, A., Maialetti, F., & Scazzocchio, B. (2002). Constituents of aromatic plants: Eucalyptol. Fitoterapia, 73(3), 269–275.

    Article  PubMed  Google Scholar 

  • Committee on Drugs. (2001). The transfer of drugs and other chemicals into human milk. Pediatrics, 108(3), 776–789.

    Google Scholar 

  • Duisken, M., Sandner, F., Blomeke, B., & Hollender, J. (2005). Metabolism of 1,8-cineole by human cytochrome P450 enzymes: Identification of a new hydroxylated metabolite. Biochimica et Biophysica Acta: General Subjects, 1722(3), 304–311. doi:10.1016/j.bbagen.2004.12.019.

    Article  CAS  Google Scholar 

  • El-Rayes, B. F., Ali, S., Heilbrun, L. K., Lababidi, S., Bouwman, D., Visscher, D., et al. (2003). Cytochrome P450 and glutathione transferase expression in human breast cancer. Clinical Cancer Research, 9(5), 1705–1709.

    PubMed  CAS  Google Scholar 

  • Engel, W. (2001). In vivo studies on the metabolism of the monoterpenes S-(+)- and R-(−)-carvone in humans using the metabolism of ingestion-correlated amounts (MICA) approach. Journal of Agricultural and Food Chemistry, 49(8), 4069–4075. doi:10.1021/jf010157q.

    Article  PubMed  CAS  Google Scholar 

  • Engel, W., Bahr, W., & Schieberle, P. (1999). Solvent assisted flavour evaporation—a new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. European Food Research and Technology, 209(3–4), 237–241.

    Article  CAS  Google Scholar 

  • Fox, P. F., & Kelly, A. L. (2006a). Indigenous enzymes in milk: Overview and historical aspects—Part 1. International Dairy Journal, 16(6), 500–516. doi:10.1016/j.idairyj.2005.09.013.

    Article  CAS  Google Scholar 

  • Fox, P. F., & Kelly, A. L. (2006b). Indigenous enzymes in milk: Overview and historical aspects—Part 2. International Dairy Journal, 16(6), 517–532. doi:10.1016/j.idairyj.2005.09.017.

    Article  CAS  Google Scholar 

  • Guengerich, F. P. (2001). Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chemical Research in Toxicology, 14(6), 611–650. doi:10.1021/tx0002583.

    Article  PubMed  CAS  Google Scholar 

  • Hausner, H., Bredie, W. L. P., Mølgaard, C., Petersen, M. A., & Møller, P. (2008). Differential transfer of dietary flavour compounds into human breast milk. Physiology & Behavior, 95(1–2), 118–124.

    Article  CAS  Google Scholar 

  • Hausner, H., Nicklaus, S., Issanchou, S., Mølgaard, C., & Møller, P. (2010). Breastfeeding facilitates acceptance of a novel dietary flavour compound. Clinical Nutrition, 29(1), 141–148.

    Article  PubMed  CAS  Google Scholar 

  • Hellmold, H., Rylander, T., Magnusson, M., Reihnér, E., Warner, M., & Gustafsson, J.-Å. (1998). Characterization of cytochrome P450 enzymes in human breast tissue from reduction mammaplasties. Journal of Clinical Endocrinology and Metabolism, 83(3), 886–895. doi:10.1210/jc.83.3.886.

    Article  PubMed  CAS  Google Scholar 

  • Horst, K., & Rychlik, M. (2010). Quantification of 1,8-cineole and of its metabolites in humans using stable isotope dilution assays. Molecular Nutrition & Food Research, 54(10), 1515–1529. doi:10.1002/mnfr.200900528.

    Article  CAS  Google Scholar 

  • Iscan, M., Klaavuniemi, T., Coban, T., Kapucuoglu, N., Pelkonen, O., & Raunio, H. (2001). The expression of cytochrome P450 enzymes in human breast tumours and normal breast tissue. Breast Cancer Research and Treatment, 70(1), 47–54.

    Article  PubMed  CAS  Google Scholar 

  • Ito, S., & Lee, A. (2003). Drug excretion into breast milk–Overview. Advanced Drug Delivery Reviews, 55(5), 617–627.

    Article  PubMed  CAS  Google Scholar 

  • Kapucuoglu, N., Coban, T., Raunio, H., Pelkonen, O., Edwards, R. J., Boobis, A. R., et al. (2003). Expression of CYP3A4 in human breast tumour and non-tumour tissues. Cancer Letters, 202(1), 17–23. doi:10.1016/j.canlet.2003.08.015.

    Article  PubMed  CAS  Google Scholar 

  • Kirsch, F., Beauchamp, J., & Buettner, A. (2012). Time-dependent aroma changes in breast milk after oral intake of a pharmacological preparation containing 1,8-cineole. Clinical Nutrition,. doi:10.1016/j.clnu.2012.02.002.

    PubMed  Google Scholar 

  • Kováts, E. (1958). Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helvetica Chimica Acta, 41(7), 1915–1932.

    Article  Google Scholar 

  • Lake, B. G. (1999). Coumarin metabolism, toxicity and carcinogenicity: Relevance for human risk assessment. Food and Chemical Toxicology, 37(4), 423–453.

    Article  PubMed  CAS  Google Scholar 

  • Lönnerdal, B. (1985). Biochemistry and physiological function of human milk proteins. American Journal of Clinical Nutrition, 42(6), 1299–1317.

    PubMed  Google Scholar 

  • MacRae, I. C., Alberts, V., Carman, R. M., & Shaw, I. M. (1979). Products of 1,8-cineole oxidation by a pseudomonad. Australian Journal of Chemistry, 32(4), 917–922.

    Article  CAS  Google Scholar 

  • McLean, S., Boyle, R. R., Brandon, S., Davies, N. W., & Sorensen, J. S. (2007). Pharmacokinetics of 1,8-cineole, a dietary toxin, in the brushtail possum (Trichosurus vulpecula): Significance for feeding. Xenobiotica, 37, 903–922. doi:10.1080/00498250701570277.

    Article  PubMed  CAS  Google Scholar 

  • McManaman, J. L., & Neville, M. C. (2003). Mammary physiology and milk secretion. Advanced Drug Delivery Reviews, 55(5), 629–641. doi:10.1016/s0169-409x(03)00033-4.

    Article  PubMed  CAS  Google Scholar 

  • Mennella, J. A., & Beauchamp, G. K. (1991a). Maternal diet alters the sensory qualities of human-milk and the nursling’s behavior. Pediatrics, 88(4), 737–744.

    PubMed  CAS  Google Scholar 

  • Mennella, J. A., & Beauchamp, G. K. (1991b). The transfer of alcohol to human milk. New England Journal of Medicine, 325(14), 981–985. doi:10.1056/NEJM199110033251401.

    Article  PubMed  CAS  Google Scholar 

  • Mennella, J. A., & Beauchamp, G. K. (1993). Beer, breast-feeding, and folklore. Developmental Psychobiology, 26(8), 459–466.

    Article  PubMed  CAS  Google Scholar 

  • Mennella, J. A., & Beauchamp, G. K. (1999). Experience with a flavor in mother’s milk modifies the infant’s acceptance of flavored cereal. Developmental Psychobiology, 35(3), 197–203.

    Article  PubMed  CAS  Google Scholar 

  • Miyazawa, M., & Shindo, M. (2001). Biotransformation of 1,8-cineole by human liver microsomes. Natural Product Letters, 15(1), 49–53.

    Article  PubMed  CAS  Google Scholar 

  • Miyazawa, M., Kameoka, H., Morinaga, K., Negoro, K., & Mura, N. (1989). Hydroxycineole: Four new metabolites of 1,8-cineole in rabbits. Journal of Agricultural and Food Chemistry, 37(1), 222–226.

    Article  CAS  Google Scholar 

  • Miyazawa, M., Shindo, M., & Shimada, T. (2001). Oxidation of 1,8-cineole, the monoterpene cyclic ether originated from eucalyptus Polybractea, by cytochrome P450 3A enzymes in rat and human liver microsomes. Drug Metabolism and Disposition, 29(2), 200–205.

    PubMed  CAS  Google Scholar 

  • Nesslany, F., Parent-Massin, D., & Marzin, D. (2010). Risk assessment of consumption of methylchavicol and tarragon: The genotoxic potential in vivo and in vitro. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 696(1), 1–9.

    Article  CAS  Google Scholar 

  • Newcomb, M., Chandrasena, R. E. P., Lansakara-P, D. S. P., Kim, H. Y., Lippard, S. J., Beauvais, L. G., et al. (2007). Desaturase reactions complicate the use of norcarane as a mechanistic probe. Unraveling the mixture of twenty-plus products formed in enzyme-catalyzed oxidations of norcarane. Journal of Organic Chemistry, 72(4), 1121–1127. doi:10.1021/jo061864r.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, H., & Noma, Y. (1996). Microbial transformation of monoterpenes: Flavor and biological activity. In G. R. Takeoka, P. J. Williams & A. Kobayashi (Eds.), ACS Symposium Series 1996: Biotechnology for improved foods and flavors (Vol. 637, pp. 173–187). Washington: American Chemical Society.

  • Nishimura, H., Noma, Y., & Mizutani, J. (1982). Eucalyptus as biomass: Novel compounds from microbial conversion of 1,8-cineole. Agricultural and Biological Chemistry, 46(10), 2601–2604.

    Article  CAS  Google Scholar 

  • Pass, G. J., McLean, S., Stupans, I., & Davies, N. (2001). Microsomal metabolism of the terpene 1,8-cineole in the common brushtail possum (Trichosurus vulpecula), koala (Phascolarctos cinereus), rat and human. Xenobiotica, 31(4), 205–221.

    Article  PubMed  CAS  Google Scholar 

  • Schieberle, P., & Grosch, W. (1987). Quantitative analysis of aroma compounds in wheat and rye bread crusts using a stable isotope-dilution assay. Journal of Agricultural and Food Chemistry, 35(2), 252–257.

    Article  CAS  Google Scholar 

  • Shahani, K. M., Kwan, A. J., & Friend, B. A. (1980). Role and significance of enzymes in human milk. American Journal of Clinical Nutrition, 33(8), 1861–1868.

    PubMed  CAS  Google Scholar 

  • Shilling, W. H., Crampton, R. F., & Longland, R. C. (1969). Metabolism of coumarin in man. Nature, 221(5181), 664–665.

    Article  PubMed  CAS  Google Scholar 

  • Slessor, K. E., Stok, J. E., Cavaignac, S. M., Hawkes, D. B., Ghasemi, Y., & De Voss, J. J. (2010). Cineole biodegradation: Molecular cloning, expression and characterisation of (1R)-6 beta-hydroxycineole dehydrogenase from Citrobacter braakii. Bioorganic Chemistry, 38(1–3), 81–86. doi:10.1016/j.bioorg.2009.12.003.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R. L., Cohen, S. M., Doull, J., Feron, V. J., Goodman, J. I., Marnett, L. J., et al. (2005). Criteria for the safety evaluation of flavoring substances: The Expert Panel of the Flavor and Extract Manufacturers Association. Food and Chemical Toxicology, 43(8), 1141–1177.

    Article  PubMed  CAS  Google Scholar 

  • Southwell, I. A., Russell, M. F., Maddox, C. D. A., & Wheeler, G. S. (2003). Differential metabolism of 1,8-cineole in insects. Journal of Chemical Ecology, 29(1), 83–94.

    Article  PubMed  CAS  Google Scholar 

  • Trudgill, P. W. (1990). Microbial metabolism of monoterpenes—recent developments. Biodegradation, 1(2), 93–105.

    Article  PubMed  CAS  Google Scholar 

  • Waddell, W. J. (2002). Thresholds of carcinogenicity of flavors. Toxicological Sciences, 68(2), 275–279.

    Article  PubMed  CAS  Google Scholar 

  • Wiederschain, G. Y., & Newburg, D. S. (2001). Glycoconjugate stability in human milk: Glycosidase activities and sugar release. The Journal of Nutritional Biochemistry, 12(10), 559–564.

    Article  PubMed  CAS  Google Scholar 

  • Williams, J. A., & Phillips, D. H. (2000). Mammary expression of xenobiotic metabolizing enzymes and their potential role in breast cancer. Cancer Research, 60, 4667–4677.

    PubMed  CAS  Google Scholar 

  • Zeller, A., Horst, K., & Rychlik, M. (2009). Study of the metabolism of estragole in humans consuming fennel tea. Chemical Research in Toxicology, 22(12), 1929–1937. doi:10.1021/tx900236g.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Federal Ministry of Education and Research (BMBF). The authors are exclusively responsible for the contents of this publication. We are grateful to the mothers for voluntarily providing samples of their milk, as well as to Prof. Horst-Christian Langowski and Fraunhofer IVV, Freising, Germany, for support of our scientific work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Buettner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirsch, F., Horst, K., Röhrig, W. et al. Tracing metabolite profiles in human milk: studies on the odorant 1,8-cineole transferred into breast milk after oral intake. Metabolomics 9, 483–496 (2013). https://doi.org/10.1007/s11306-012-0466-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-012-0466-9

Keywords

Navigation