Skip to main content

Advertisement

Log in

Update on HIV-Associated Neurocognitive Disorders

  • Infection (J Berger, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Neurocognitive disorders are a feared complication of HIV infection, especially in the post-antiretroviral era as patients are living longer. These disorders are challenging in terms of diagnosis and treatment. The clinical syndrome has evolved, driven in part by comorbidities such as aging, drug abuse, psychiatric illnesses, and a metabolic syndrome associated with the use of antiretroviral drugs. Additionally some individuals may develop a fulminant immune reconstitution syndrome. Hence, treatment of these patients needs to be individualized. The focus of research in the HIV field has recently switched towards elimination of the HIV reservoir as a means of combating long-term HIV complications. However, these approaches may be suitable for limited populations and might not be applicable once the HIV reservoir has been established in the brain. Further, all clinical trials using neuroprotective or anti-inflammatory drugs for treatment of HIV-associated neurocognitive disorders have been unsuccessful. Hence, neurological complications of HIV infection are the biggest challenge facing HIV researchers, and there is a critical need to develop new diagnostics and approaches for treatment of these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Tanne JH. Nearly 40 million people worldwide are infected with HIV. BMJ. 2006;332:1289.

    Article  PubMed  Google Scholar 

  2. Hogan C, Wilkins E. Neurological complications in HIV. Clin Med. 2011;11(6):571–5.

    Article  PubMed  Google Scholar 

  3. •• Heaton RK, Franklin DR, Ellis RJ, et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol. 2011;17:3–16. This study shows in a large multicenter cohort that the prevalence of HAND is still substantial despite adequate ART.

    Article  PubMed  CAS  Google Scholar 

  4. Carey CL, Woods SP, Rippeth JD, et al. Prospective memory in HIV-1 infection. J Clin Exp Neuropsychol. 2006;28(4):536–48.

    Article  PubMed  Google Scholar 

  5. Hinkin CH, Castellon SA, Durvasula RS, et al. Medication adherence among HIV+ adults: effects of cognitive dysfunction and regimen complexity. Neurology. 2002;59(12):1944–50.

    Article  PubMed  CAS  Google Scholar 

  6. Cherner M, Masliah E, Ellis RJ, et al. Neurocognitive dysfunction predicts postmortem findings of HIV encephalitis. Neurology. 2002;59:1563–7.

    Article  PubMed  CAS  Google Scholar 

  7. Antinori A, Arendt G, Becker JT, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69(18):1789–99.

    Article  PubMed  CAS  Google Scholar 

  8. Ellis R, Langford D, Masliah E. HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat Rev Neurosci. 2007;8(1):33–44.

    Article  PubMed  CAS  Google Scholar 

  9. McArthur JC, Brew BJ, Nath A. Neurological complications of HIV infection. Lancet Neurol. 2005;4(9):543–55.

    Article  PubMed  Google Scholar 

  10. Heaton RK, Franklin DR, Ellis RJ, et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol. 2011;17(1):3–16.

    Article  PubMed  CAS  Google Scholar 

  11. • Johnson T, Nath A. Immune reconstitution inflammatory syndrome and the central nervous system. Curr Opin Neurol. 2011;24(3):284–90. This review discusses the clinical manifestations, pathophysiology, and management of IRIS affecting the CNS in HIV-infected individuals.

    Article  PubMed  CAS  Google Scholar 

  12. Gonzalez E, Rovin BH, Sen L, et al. HIV-1 infection and AIDS dementia are influenced by a mutant MCP-1 allele linked to increased monocyte infiltration of tissues and MCP-1 levels. Proc Natl Acad Sci U S A. 2002;99:13795.

    Article  PubMed  CAS  Google Scholar 

  13. Valcour V, Shikuma C, Shiramizu B, et al. Age, apolipoprotein E4, and the risk of HIV dementia: the Hawaii Aging with HIV Cohort. J Neuroimmunol. 2004;157:197–202.

    Article  PubMed  CAS  Google Scholar 

  14. Singh KK, Ellis RJ, Marquie-Beck J, et al. CCR2 polymorphisms affect neuropsychological impairment in HIV-1-infected adults. J Neuroimmunol. 2004;157:185–92.

    Article  PubMed  CAS  Google Scholar 

  15. Mathers BM, Degenhardt L, Ali H, et al. HIV prevention, treatment, and care services for people who inject drugs: a systematic review of global, regional, and national coverage. Lancet. 2010;375:1014–28.

    Article  PubMed  Google Scholar 

  16. McCutchan JA, Marquie-Beck JA, Fitzsimons CA, et al. Role of obesity, metabolic variables, and diabetes in HIV-associated neurocognitive disorder. Neurology. 2012;78:485–92.

    Article  PubMed  CAS  Google Scholar 

  17. Valcour VG, Sacktor NC, Paul RH, et al. Insulin resistance is associated with cognition among HIV-1-infected patients: the Hawaii Aging with HIV Cohort. J Acquir Immune Defic Syndr. 2006;43:405–10.

    Article  PubMed  Google Scholar 

  18. McArthur JC, Hoover DR, Bacellar H, et al. Dementia in AIDS patients: incidence and risk factors. Multicenter AIDS cohort study. Neurology. 1993;43:2245–52.

    Article  PubMed  CAS  Google Scholar 

  19. Becker JT, Kingsley L, Mullen J, et al. Vascular risk factors, HIV serostatus, and cognitive dysfunction in gay and bisexual men. Neurology. 2009;73:1292–9.

    Article  PubMed  CAS  Google Scholar 

  20. Esiri MM, Biddolph SC, Morris CS. Prevalence of Alzheimer plaques in AIDS. J Neurol Neurosurg Psychiatry. 1998;65:29–33.

    Article  PubMed  CAS  Google Scholar 

  21. Rempel HC, Pulliam L. HIV-1 Tat inhibits neprilysin and elevates amyloid beta. AIDS. 2005;19:127–35.

    Article  PubMed  CAS  Google Scholar 

  22. • Achim CL, Adame A, Dumaop W, et al. Increased accumulation of intraneuronal amyloid beta in HIV-infected patients. J Neuroimmune Pharmacol. 2009;4:190–9. This demonstrates that the amyloid based pathology in HIV infected individuals is distinctly different from that in Alzheimer’s disease.

    Article  PubMed  Google Scholar 

  23. Cherner M, Ellis RJ, Lazzaretto D, et al. Effects of HIV-1 infection and aging on neurobehavioral functioning: preliminary findings. AIDS. 2004;18 Suppl 1:S27–34.

    PubMed  Google Scholar 

  24. Valcour V, Shikuma C, Shiramizu B, et al. Higher frequency of dementia in older HIV-1 individuals: the Hawaii Aging with HIV-1 Cohort. Neurology. 2004;63:822–7.

    Article  PubMed  CAS  Google Scholar 

  25. Sacktor N, Skolasky R, Selnes OA, et al. Neuropsychological test profile differences between young and old human immunodeficiency virus-positive individuals. J Neurovirol. 2007;13:203–9.

    Article  PubMed  Google Scholar 

  26. Parsons TD, Tucker KA, Hall CD, et al. Neurocognitive functioning and HAART in HIV and hepatitis C virus co-infection. AIDS. 2006;20:1591–5.

    Article  PubMed  Google Scholar 

  27. Tozzi V, Balestra P, Lorenzini P, et al. Prevalence and risk factors for human immunodeficiency virus-associated neurocognitive impairment, 1996 to 2002: results from an urban observational cohort. J Neurovirol. 2005;11:265–73.

    Article  PubMed  Google Scholar 

  28. Sun B, Abadjian L, Rempel H, et al. Differential cognitive impairment in HCV coinfected men with controlled HIV compared to HCV monoinfection. J Acquir Immune Defic Syndr. 2013;62:190–6.

    Article  PubMed  Google Scholar 

  29. •• Nath A, Clements JE. Eradication of HIV from the brain: reasons for pause. AIDS. 2011;25(5):577–80. This article discusses the challenges in the eradication of HIV from the brain.

    Article  PubMed  Google Scholar 

  30. Palmer S, Maldarelli F, Wiegand A, et al. Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc Natl Acad Sci U S A. 2008;105:3879–84.

    Article  PubMed  CAS  Google Scholar 

  31. Maldarelli F, Palmer S, King MS, et al. ART suppresses plasma HIV-1 RNA to a stable set point predicted by pretherapy viremia. PLoS Pathog. 2007;3:e46.

    Article  PubMed  Google Scholar 

  32. Nath A. Human immunodeficiency virus (HIV) proteins in neuropathogenesis of HIV dementia. J Infect Dis. 2002;186 Suppl 2:S193–8.

    Article  PubMed  CAS  Google Scholar 

  33. Johnson TP, Patel K, Johnson KR, et al. Induction of IL-17 and non-classical T-cell activation by HIV-Tat protein. Proc Natl Acad Sci USA. 2013. doi:10.1073/pnas.1308673110.

    Google Scholar 

  34. Bruce-Keller AJ, Chauhan A, Dimayuga FO, et al. Synaptic transport of human immunodeficiency virus-Tat protein causes neurotoxicity and gliosis in rat brain. J Neurosci. 2003;23(23):8417–22.

    PubMed  CAS  Google Scholar 

  35. Wang T, Lee MH, Choi E, et al. Granzyme B-induced neurotoxicity is mediated via activation of PAR-1 receptor and Kv1. 3 channel. PLoS One. 2012;7(8):e43950.

    Article  PubMed  CAS  Google Scholar 

  36. Wang T, Allie R, Conant K, et al. Granzyme B mediates neurotoxicity through a G-protein-coupled receptor. FASEB J. 2006;20(8):1209–11.

    Article  PubMed  CAS  Google Scholar 

  37. Ancuta P, Kamat A, Kunstman KJ, et al. Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients. PLoS One. 2008;3(6):e2516.

    Article  PubMed  Google Scholar 

  38. Kamat A, Ancuta P, Blumberg RS, et al. Serological markers for inflammatory bowel disease in AIDS patients with evidence of microbial translocation. PLoS One. 2010;5(11):e15533.

    Article  PubMed  Google Scholar 

  39. Dohgu S, Fleegal-DeMotta MA, Banks WA. Lipopolysaccharide-enhanced transcellular transport of HIV-1 across the blood-brain barrier is mediated by luminal microvessel IL-6 and GM-CSF. J Neuroinflammation. 2011;8(1):167.

    Article  PubMed  CAS  Google Scholar 

  40. Pang S, Koyanagi Y, Miles S, et al. High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients. Nature. 1990;343(6253):85–9.

    Article  PubMed  CAS  Google Scholar 

  41. Wu Y, Marsh JW. Selective transcription and modulation of resting T cell activity by preintegrated HIV DNA. Science. 2001;293(5534):1503–6.

    Article  PubMed  CAS  Google Scholar 

  42. Teo I, Veryard C, Barnes H, et al. Circular forms of unintegrated human immunodeficiency virus type 1 DNA and high levels of viral protein expression: association with dementia and multinucleated giant cells in the brains of patients with AIDS. J Virol. 1997;71(4):2928–33.

    PubMed  CAS  Google Scholar 

  43. Marra CM, Zhao Y, Clifford DB, et al. Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance. AIDS. 2009;23(11):1359–66.

    Article  PubMed  Google Scholar 

  44. Gray LR, Gabuzda D, Cowley D, et al. CD4 and MHC class 1 down-modulation activities of nef alleles from brain- and lymphoid tissue-derived primary HIV-1 isolates. J Neurovirol. 2011;17(1):82–91.

    Article  PubMed  CAS  Google Scholar 

  45. Dunfee RL, Thomas ER, Gorry PR, et al. The HIV Env variant N283 enhances macrophage tropism and is associated with brain infection and dementia. Proc Natl Acad Sci U S A. 2006;103(41):15160–5.

    Article  PubMed  CAS  Google Scholar 

  46. Gonzalez-Perez MP, O'Connell O, Lin R, et al. Independent evolution of macrophage-tropism and increased charge between HIV-1 R5 envelopes present in brain and immune tissue. Retrovirology. 2012;9:20.

    Article  PubMed  CAS  Google Scholar 

  47. Cowley D, Gray LR, Wesselingh SL, et al. Genetic and functional heterogeneity of CNS-derived tat alleles from patients with HIV-associated dementia. J Neurovirol. 2011;17(1):70–81.

    Article  PubMed  CAS  Google Scholar 

  48. Li W, Huang Y, Reid R, et al. NMDA receptor activation by HIV-Tat protein is clade dependent. J Neurosci. 2008;28(47):12190–8.

    Article  PubMed  CAS  Google Scholar 

  49. Olivieri KC, Agopian KA, Mukerji J, et al. Evidence for adaptive evolution at the divergence between lymphoid and brain HIV-1 nef genes. AIDS Res Hum Retrovir. 2010;26(4):495–500.

    Article  PubMed  CAS  Google Scholar 

  50. Thompson KA, Churchill MJ, Gorry PR, et al. Astrocyte specific viral strains in HIV dementia. Ann Neurol. 2004;56(6):873–7.

    Article  PubMed  CAS  Google Scholar 

  51. Lamers SL, Gray RR, Salemi M, et al. HIV-1 phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues. Infect Genet Evol. 2011;11(1):31–7.

    Article  PubMed  Google Scholar 

  52. Vissers M, Stelma FF, Koopmans PP. Could differential virological characteristics account for ongoing viral replication and insidious damage of the brain during HIV 1 infection of the central nervous system? J Clin Virol. 2010;49(4):231–8.

    Article  PubMed  CAS  Google Scholar 

  53. Lamers SL, Salemi M, Galligan DC, et al. Human immunodeficiency virus-1 evolutionary patterns associated with pathogenic processes in the brain. J Neurovirol. 2010;16(3):230–41.

    Article  PubMed  CAS  Google Scholar 

  54. Aquaro S, Calio R, Balzarini J, et al. Macrophages and HIV infection: therapeutical approaches toward this strategic virus reservoir. Antiviral Res. 2002;55(2):209–25.

    Article  PubMed  CAS  Google Scholar 

  55. Cinque P, Presi S, Bestetti A, et al. Effect of genotypic resistance on the virological response to highly active antiretroviral therapy in cerebrospinal fluid. AIDS Res Hum Retrovir. 2001;17(5):377–83.

    Article  PubMed  CAS  Google Scholar 

  56. Letendre SL, Ellis RJ, Ances BM, McCutchan JA. Neurologic complications of HIV disease and their treatment. Top HIV Med. 2010;18(2):45–55.

    PubMed  Google Scholar 

  57. • Cohen J. Understanding HIV latency to undo it. Science. 2011;332(6031):786. This reviews all the ongoing clinical trials for eradication of HIV infection.

    Article  PubMed  Google Scholar 

  58. Johnson T, Nath A. Immune reconstitution inflammatory syndrome and the central nervous system. Curr Opin Neurol. 2011;24(3):284–90.

    Article  PubMed  CAS  Google Scholar 

  59. Holt N, Wang J, Kim K, et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol. 2010;28(8):839–47.

    Article  PubMed  CAS  Google Scholar 

  60. Ene L, Duiculescu D, Ruta SM. How much do antiretroviral drugs penetrate into the central nervous system? J Med Life. 2011;4(4):432.

    PubMed  CAS  Google Scholar 

  61. Sawchuk RJ, Yang Z. Investigation of distribution, transport and uptake of anti-HIV drugs to the central nervous system. Adv Drug Deliv Rev. 1999;39(1):5–31.

    Article  PubMed  CAS  Google Scholar 

  62. Croteau D, Letendre S, Best BM, et al. Total raltegravir concentrations in cerebrospinal fluid exceed the 50-percent inhibitory concentration for wild-type HIV-1. Antimicrob Agents Chemother. 2010;54(12):5156–60.

    Article  PubMed  CAS  Google Scholar 

  63. Dahl V, Lee E, Peterson J, et al. Raltegravir treatment intensification does not alter cerebrospinal fluid HIV-1 infection or immunoactivation in subjects on suppressive therapy. J Infect Dis. 2011;204(12):1936–45.

    Article  PubMed  CAS  Google Scholar 

  64. Nowacek A, Gendelman HE. NanoART, neuroAIDS and CNS drug delivery. Nanomedicine. 2009;4(5):557–74.

    Article  PubMed  CAS  Google Scholar 

  65. Rao KS, Reddy MK, Horning JL. TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomaterials. 2008;29(33):4429–38.

    Article  PubMed  CAS  Google Scholar 

  66. Tan IL, McArthur JC. HIV-Associated neurological disorders. CNS Drugs. 2012;26(2):123–34.

    Article  PubMed  Google Scholar 

Download references

Compliance with ethics Guidelines

Conflict of Interest

Tariq B. Alfahad and Avindra Nath declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avindra Nath.

Additional information

This article is part of the Topical Collection on Infection

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alfahad, T.B., Nath, A. Update on HIV-Associated Neurocognitive Disorders. Curr Neurol Neurosci Rep 13, 387 (2013). https://doi.org/10.1007/s11910-013-0387-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-013-0387-7

Keywords

Navigation