Review
Mitochondrial cytochrome b: evolution and structure of the protein

https://doi.org/10.1016/0005-2728(93)90197-NGet rights and content

Abstract

Cytochrome b is the central redox catalytic subunit of the quinol: cytochrome c or plastocyanin oxidoreductases. It is involved in the binding of the quinone substrate and it is responsible for the transmembrane electron transfer by which redox energy is converted into a protonmotive force. Cytochrome b also contains the sites to which various inhibitors and quinone antagonists bind and, consequently, inhibit the oxidoreductase.

Ten partial primary sequences of cytochrome b are presented here and they are compared with sequence data from over 800 species for a detailed analysis of the natural variation in the protein. This sequence information has been used to predict some aspects of the structure of the protein, in particular the folding of the transmembrane helices and the location of the quinone- and heme-binding pockets.

We have observed that inhibitor sensitivity varies greatly among species. The comparison of inhibition titrations in combination with the analysis of the primary structures has enabled us to identify amino acid residues in cytochrome b that may be involved in the binding of the inhibitors and, by extrapolation, quinone/quinol.

The information on the quinone-binding sites obtained in this way is expected to be both complementary and supplementary to that which will be obtained in the future by mutagenesis and X-ray crystallography.

References (256)

  • G. Hauska et al.

    Biochim. Biophys. Acta

    (1983)
  • S. De Vries et al.

    Biochim. Biophys. Acta

    (1987)
  • A. Crofts et al.

    Biochim. Biophys. Acta

    (1992)
  • W.R. Widger et al.
  • P. Mitchell

    FEBS Lett.

    (1975)
  • M. Wikström et al.
  • R.W. Mansfield et al.

    Biochim. Biophys. Acta

    (1990)
  • C.H. Yun et al.

    J. Biol. Chem.

    (1992)
  • M. Saraste

    FEBS Lett.

    (1984)
  • R. Brasseur

    J. Biol. Chem.

    (1988)
  • J.P. Di Rago et al.

    J. Biol. Chem.

    (1988)
  • D. Bashford et al.

    J. Mol. Biol.

    (1987)
  • D.R. Nelson et al.

    J. Biol. Chem.

    (1988)
  • F.G. Nobrega et al.

    J. Biol. Chem.

    (1980)
  • A. Ghelli et al.

    Comp. Biochem. Physiol.

    (1992)
  • G.L. Tian et al.

    J. Mol. Biol.

    (1991)
  • H.T. Jacobs et al.

    J. Mol. Biol.

    (1988)
  • R. Benne

    Biochim. Biophys. Acta

    (1989)
  • B.A. Roe et al.

    J. Biol. Chem.

    (1985)
  • B.F. Lang et al.

    J. Mol. Biol.

    (1985)
  • D.M. Hampsey et al.

    J. Biol. Chem.

    (1986)
  • P. Desjardins et al.

    J. Mol. Biol.

    (1990)
  • J.P. Di Rago et al.

    J. Biol. Chem.

    (1990)
  • S. De Vries et al.

    Biochim. Biophys. Acta

    (1983)
  • J. Kyte et al.

    J. Mol. Biol.

    (1982)
  • P. Argos et al.

    Biochim. Biophys. Acta

    (1985)
  • C.H. Yun et al.

    J. Biol. Chem.

    (1991)
  • W. Cramer et al.

    Trends Biochem. Sci.

    (1991)
  • G.D. Fasman et al.

    Trends Biochem. Sci.

    (1990)
  • G. Von Jagow et al.

    Annu. Rev. Biochem.

    (1980)
  • E.C. Slater
  • H.R. Mahler et al.
  • N. Howell

    J. Mol. Evol.

    (1989)
  • P.L. Dutton
  • B.L. Trumpower

    Microbiol. Rev.

    (1990)
  • W.A. Cramer et al.
  • G. Hauska et al.

    J. Bioenerg. Biomembr.

    (1988)
  • P. Mitchell
  • P.R. Rich

    J. Bioenerg. Biomembr.

    (1986)
  • F. Daldal et al.

    EMBO J

    (1989)
  • B. Chance et al.
  • M. Degli Esposti et al.

    Eur. J. Biochem.

    (1989)
  • W.R. Widger et al.
  • A. Crofts et al.
  • M. Degli Esposti et al.
  • A. Crofts et al.
  • T.D. Kocher et al.
  • A. Meyer et al.

    Nature

    (1990)
  • A. Meyer et al.

    J. Mol. Evol.

    (1990)
  • D.M. Irwin et al.

    J. Mol. Evol.

    (1991)
  • Cited by (359)

    • Investigation of protein-ligand binding motions through protein conformational morphing and clustering of cytochrome bc1-aa3 super complex

      2023, Journal of Molecular Graphics and Modelling
      Citation Excerpt :

      Cytochrome bc1-aa3 super complex plays a fundamental role in the mycobacterial ETC, and disruption of this super complex leads to serious growth defects [8]. The QcrB component in ETC is essential in the cellular respiratory chain for the transportation of electrons across the membrane through multi-subunits of the cytochrome-bc1 complex to finally transfer the electrons to the cytochrome-aa3 complex for the reduction of oxygen [11,12]. During electron transfer, the QcrB subunit converts redox energy into proton motive force by pumping the protons into the periplasmic space.

    View all citing articles on Scopus
    View full text