Review
Glycogen structure and biogenesis

https://doi.org/10.1016/0020-711X(91)90274-QGet rights and content

First page preview

First page preview
Click to open first page preview

References (138)

  • P.C. Calder et al.

    Rat skeletal muscle lysosomes contain lysosomes

    Int. J. Biochem.

    (1989)
  • P.C. Calder et al.

    Post mortem glycogenolysis is a combination of phosphorolysis and hydrolysis

    Int. J. Biochem.

    (1990)
  • N.P. Chee et al.

    The structure of liver glycogen

    FEBS Lett.

    (1977)
  • N.P. Chee et al.

    Metabolic heterogeneity in rabbit brain glycogen

    Biochim. biophys. Acta

    (1983)
  • R. Ching et al.

    Compartmentation of glycogen metabolism in the liver

    Carbohydr. Res.

    (1985)
  • R. Geddes

    Studies on native glycogen. 2. Observations on metabolic inhomogeneity

    Int. J. Biochem.

    (1971)
  • R. Geddes et al.

    Post mortem degradation of glycogen

    FEBS Lett.

    (1973)
  • R. Geddes et al.

    Molecular and metabolic heterogeneity of liver glycogen

    Carbohydr. Res.

    (1977)
  • S.H. Goldemberg

    Specificity of uridine diphosphate glucose-glycogen glucosyltransferase

    Biochim. biophys. Acta

    (1962)
  • E. Goldsmith et al.

    Structure of maltoheptaose by difference Fourier methods and a model for glycogen

    J. molec. Biol.

    (1982)
  • Z. Gunja-Smith et al.

    A glycogen debranching enzyme from Cytophaga

    FEBS Lett.

    (1970)
  • Z. Gunja-Smith et al.

    A revision of the Meyer-Bernfeld model of glycogen and amylopectin

    FEBS Lett.

    (1970)
  • B. Illingworth et al.

    Structure of glycogens and amylopectins. I. Enzymatic determination of chain length

    J. biol. Chem.

    (1952)
  • B.G. Johnson et al.

    Age-related ultrastructural changes in the flight muscle of the mosquito Culex tarsalis

    J. Insect Physiol.

    (1972)
  • O. Kjolberg et al.

    α-1,4-glucosans. XVII. The molecular structure of some glycogens

    Comp. Biochem. Physiol.

    (1963)
  • C.R. Krisman

    A possible intermediate in the initiation of glycogen biosynthesis

    Biochem. biophys. Res. Commun.

    (1972)
  • C.R. Krisman et al.

    In vitro synthesis of particulate glycogen from uridine diphosphate glucose. III. Some properties of the product synthesised by muscle glycogen synthase

    Archs Biochem. Biophys.

    (1970)
  • C.R. Krisman et al.

    A (1–4)-α-d-glucan-protein involved in liver glycogen biosynthesis

    Carbohydr. Res.

    (1986)
  • E.Y.C. Lee et al.

    Enzymic methods for the microdetermination of glycogen and amylopectin and their unit chain lengths

    Archs Biochem. Biophys.

    (1966)
  • E.Y.C. Lee et al.

    A method for investigating the fine structure of amylopectin

    Archs Biochem. Biophys.

    (1968)
  • L.F. Leloir et al.

    Synthesis of glycogen from uridinediphosphate glucose in liver

    J. biol. Chem.

    (1960)
  • L.F. Leloir et al.

    Biosynthesis of glycogen from uridine diphosphate glucose

    Archs Biochem. Biophys.

    (1959)
  • J. Lomako et al.

    The nature of the primer for glycogen synthesis in muscle

    FEBS Lett.

    (1990)
  • J. Lomako et al.

    Proglycogen: a low molecular weight form of muscle glycogen

    FEBS Lett.

    (1991)
  • D.J. Manners

    The molecular structure of glycogens

    Adv. Carbohydr. Chem. Biochem.

    (1957)
  • J.J. Marshall

    Application of enzymic methods to the structural analysis of polysaccharides

    Adv. Carbohydr. Chem. Biochem.

    (1974)
  • M. Abdullah et al.

    Requirement of rabbit muscle glycogen phosphorylase for primer

    Biochem. J.

    (1965)
  • M.A. Aon et al.

    Evidence for the glycoprotein nature of retina glycogen

    Eur. J. Biochem.

    (1984)
  • M.A. Aon et al.

    Protein-bound glycogen is linked to tyrosine residues

    Biochem. J.

    (1985)
  • R. Barengo et al.

    Initiation of glycogen biosynthesis in Escherichia coli. Studies of the properties of the enzymes involved

    Biochem. biophys. Acta

    (1975)
  • G.N. Bathgate et al.

    Multiple branching in glycogens

    Biochem. J.

    (1966)
  • D.J. Bell et al.

    Physicochemical observations on some glycogens

    Biochem. J.

    (1948)
  • C. Biava

    Identification of structural forms of human particulate glycogen

    Lab. Invest.

    (1963)
  • M.L. Blumenfeld et al.

    The initiation of glycogen biosynthesis in rat heart

    J. biol. Chem.

    (1985)
  • M.L. Blumenfeld et al.

    The initiation of glycogen biosynthesis in rat heart

    Eur. J. Biochem.

    (1983)
  • W.B. Bridgeman

    Some physical characteristics of glycogen

    J. Am. chem. Soc.

    (1942)
  • D.H. Brown et al.

    Molecular characteristics of the totally dependent and independent forms of glycogen synthase of rabbit skeletal muscle

    Biochim. biophys. Acta

    (1971)
  • W.A.J. Bryce et al.

    Physicochemical studies on starches. Part XVI. The molecular weight and apparent molecular weight distributions of rabbit liver glycogen

    J. chem. Soc.

    (1958)
  • W.A.J. Bryce et al.

    Physicochemical studies on starches. Part XII. The molecular weight of glycogens in aqueous solution

    J. chem. Soc.

    (1958)
  • H.M. Bullivant et al.

    The fine structure of glycogen

    Biochem. Int.

    (1983)
  • Cited by (85)

    • The comparative, biochemistry, genetics, and evolution of starch metabolism in Chlamydomonas reinhardtii

      2023, The Chlamydomonas Sourcebook: Volume 2: Organellar and Metabolic Processes
    • Crystallography of polysaccharides: Current state and challenges

      2022, Current Opinion in Chemical Biology
      Citation Excerpt :

      The native state of the storage polysaccharides can vary. For instance, paramylon and starch are biosynthesized in plant cells as several micrometer-large semicrystalline granules [4], while glycogen is an amorphous nanoparticle [7]. Regardless of the in vivo functionality, most linear polysaccharides have a strong crystallization tendency.

    • Lafora disease: Current biology and therapeutic approaches

      2022, Revue Neurologique
      Citation Excerpt :

      Glycogen is the largest molecule in the cytoplasm and a critical energy store. Glucose chains 10 units or longer tend to precipitate, yet 55,000-unit glycogen is soluble, a requisite to its metabolism [25]. How this solubility is achieved was part of the foundational classical biochemical discoveries of the 20th century and until recently considered settled [26].

    • Self-healing hydrogels

      2020, Self-Healing Polymer-Based Systems
    View all citing articles on Scopus
    View full text