Elsevier

Applied Surface Science

Volumes 96–98, 2 April 1996, Pages 630-642
Applied Surface Science

Thin film growth by the pulsed laser assisted deposition technique

https://doi.org/10.1016/0169-4332(95)00535-8Get rights and content

Abstract

Pulsed laser-assisted deposition (PLD) has recently emerged as a most promising film growth technique, at least for basic research, as this has been best demonstrated for highTc superconducting oxides and YBa2Cu3O7−x in particular. This article briefly outlines the specific features of this technique and its potential, illustrated by the example of the growth of YBa2Cu3O7−x thin films aimed at the preparation of microwave passive devices. The perspectives of development of PLD and its ability to become an industrial process are discussed.

Reference (84)

  • FeenstraR. et al.

    J. Appl. Phys.

    (1991)
  • FriedmannT.A. et al.

    J. Appl. Phys.

    (1994)
  • SinghR.K. et al.

    J. Mater. Res.

    (1992)
  • VenkatesanT. et al.

    Appl. Phys. Lett.

    (1987)
  • NoorBatchaI. et al.

    J. Chem. Phys.

    (1987)
  • LeeS.G. et al.

    Appl. Phys. Lett.

    (1994)
  • PanznerM. et al.

    Appl. Surf. Sci.

    (1996)
  • SmithH.M. et al.

    Appl. Opt.

    (1965)
  • BednorzJ.G. et al.

    Z. Phys. B

    (1986)
  • WuM.K. et al.

    Phys. Rev. Lett.

    (1987)
  • ChewN.G. et al.

    Appl. Phys. Lett.

    (1990)
    ChambonnetD. et al.

    J. Alloys Compounds

    (1993)
  • RimaiL. et al.

    J. Appl. Phys.

    (1993)
  • RistO. et al.

    Mater. Lett.

    (1991)
  • TreeceR.E. et al.

    Appl. Phys. Lett.

    (1994)
  • BiunnoN. et al.

    Appl. Phys. Lett.

    (1989)
    KoolsJ.C.S. et al.

    J. Vac. Sci. Technol. A

    (1992)
  • JoW. et al.

    Appl. Phys. Lett.

    (1995)
    JoW. et al.

    Appl. Phys. Lett.

    (1993)
  • SrikantV. et al.

    J. Appl. Phys.

    (1995)
    FunakoshiH. et al.

    Jpn. J. Appl. Phys. B

    (1994)
  • YoonS.G. et al.

    J. Appl. Phys.

    (1994)
  • Wiener-AvnearE.

    Appl. Phys. Lett.

    (1994)
  • AucielloO. et al.

    J. Appl. Phys.

    (1993)
  • SimionB.M. et al.

    Appl. Phys. Lett.

    (1995)
  • LeT.M. et al.

    J. Appl. Phys.

    (1995)
  • McCormackM. et al.

    Appl. Phys. Lett.

    (1994)
  • XiongF. et al.

    Appl. Phys. Lett.

    (1994)
    LiuZ.G. et al.

    J. Appl. Phys.

    (1994)
  • AgostinelliJ.A. et al.

    Appl. Phys. Lett.

    (1993)
  • YoudenK.E. et al.

    Appl. Phys. Lett.

    (1991)
  • ShibataY. et al.

    J. Appl. Phys.

    (1995)
  • MarshA.M. et al.

    Appl. Phys. Lett.

    (1993)
  • CraciumV. et al.

    Appl. Phys. Lett.

    (1994)
  • TarsaE.J. et al.

    Appl. Phys. Lett.

    (1993)
    ZhengJ.P. et al.

    Appl. Phys. Lett.

    (1993)
  • KimD.K. et al.

    Appl. Phys. Lett.

    (1994)
  • ValenzuelaA.A. et al.

    Appl. Phys. Lett.

    (1989)
    WeigelR. et al.

    IEEE MTT-S Dig.

    (1993)
  • NewmanH.S. et al.

    IEEE Trans. Magn.

    (1991)
    BorghsG. et al.

    J. Phys.

    (1994)
  • SuzukiK. et al.

    Appl. Supercond.

    (1993)
  • NegreteG.V.

    Microwave Opt. Tech. Lett.

    (1993)
  • EgamiY. et al.

    Jpn. J. Appl. Phys. B

    (1991)
    SajjadiA. et al.

    Appl. Phys. Lett.

    (1993)
    Che´enneA. et al.
  • TangY. et al.

    Jpn. J. Appl. Phys. A

    (1992)
    RenZ.F. et al.

    Appl. Phys. Lett.

    (1994)
  • MiyashitaS. et al.

    Jpn. J. Appl. Phys. A

    (1994)
  • KanaiM. et al.

    Appl. Phys. Lett.

    (1990)
    ContourJ.P. et al.

    Jpn. J. Appl. Phys. B

    (1993)
    LiX. et al.

    Jpn. J. Appl. Phys. A

    (1994)
  • IchikawaN. et al.

    Jpn. J. Appl. Phys. B

    (1994)
  • CoehoornR. et al.

    J. Magn. Magn. Mater.

    (1993)
    CheriefN. et al.

    J. Magn. Magn. Mater.

    (1993)
  • DhoteA.M. et al.

    Appl. Phys. Lett.

    (1994)
  • Cited by (41)

    • Zinc oxide–based nanomaterials for environmental applications

      2020, Handbook of Smart Photocatalytic Materials: Environment, Energy, Emerging Applications and Sustainability
    • Synthesis and characterization of Cu<inf>2</inf>ZnSnS<inf>4</inf> thin films grown by PLD: Solar cells

      2011, Journal of Alloys and Compounds
      Citation Excerpt :

      The other preparative parameters, such as pulse repetition rate, pulse length, fluencies, target-to-substrate distance, substrate temperature and substrate orientation have a strong influence on film properties which demonstrate the enormous versatility of PLD. The deposition in vivid atmospheres to have good stoichiometric multi component films is also possible [18,19]. The literature survey shows that, in spite of having such a fascinating technique for the deposition of thin films, very meagre amount of work on CZTS thin films has been carried out using this method, probably may be due to small area of deposition (usually 1 cm2) [20–22].

    • Pulsed laser deposition of Zinc oxide (ZnO)

      2006, Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications
    View all citing articles on Scopus
    View full text