Elsevier

Biochimie

Volume 56, Issue 3, 15 May 1974, Pages 383-390
Biochimie

On the chemical reactivity of aminoacyl-tRNA ester bond: I - Influence of pH and nature of the acyl group on the rate of hydrolysis

https://doi.org/10.1016/S0300-9084(74)80146-XGet rights and content

Summary

We have studied the base catalyzed hydrolysis of valyl-tRNA and N-acetyl-valyl tRNA as a function of pH, at 37°C and I = 0.3. The fully protonated form is found to hydrolyse 90 times faster than the unprotonated one (second order rate constant: 2.30.104 1.M−1min−1 compared to 2.50.102 1.M−1min−1). For the N-acetylated compound the rate constant is 4.16.102 1.M−1min−1. The pKa of the valyl-tRNA amine function is found to be 7.5. The variation of rate constants as a function of the acyl part shows that the base catalyzed hydrolysis of acyl-tRNAs is very sensitive to the inductive effect of the acyl moiety. The lability of the aminoacyl-tRNA ester bond is discussed.

Résumé

Nous avons étudié l'hydrolyse alcaline de la liaison ester du valyl-tRNA et du N-acétyl valyl-tRNA en fonction du pH, à 37°C et I = 0,3. La vitesse d'hydrolyse de la forme protonée du valyl-tRNA (k = 2,30.104 1.M−1min−1) est 90 fois supérieure à celle de la forme libre (k = 2,5.102 1.M−1min−1). La constante de vitesse de deuxième ordre pour l'hydrolyse du dérivé N-acétylé est 4,16.102 1.M−1min−1. Cette étude cinétique a permis d'estimer à pKa = 7,5 la constante de dissociation de la fonction amine du valyl-tRNA. La variation des constantes de vitesse en fonction du radical acyle des acyl-tRNAs indique une prépondérance de l'effet inductif de la partie acyle sur l'hydrolyse. La labilité de liaison ester des aminoacyl-tRNAs est analysée.

References (68)

  • LeibowitzM.J. et al.

    J. Biol. Chem.

    (1971)
    LeibowitzM.J. et al.

    J. Biol. Chem.

    (1971)
  • LennarzW.J.

    Acc. Chem. Res.

    (1972)
  • GouldR.M. et al.

    J. Biol. Chem.

    (1968)
  • StewartT.S. et al.

    Nature

    (1971)
  • PestkaS.
  • MonroR.E.

    J. Mol. Biol.

    (1967)
  • MadenB.E.H. et al.

    J. Mol. Biol.

    (1967)
  • MertesM. et al.

    J. Mol. Biol.

    (1972)
  • KernD. et al.

    Eur. J. Biochem.

    (1972)
  • SchuberF. et al.

    Biochimie

    (1974)
  • JencksW.P.

    Catalysis in Chemistry and Enzymology

    (1969)
  • PinckM. et al.

    Biochimie

    (1971)
  • Handbook of Chemistry and Physics (1968) Weast R. C. Ed. 49th Edition, The Chemical Rubber Co....
  • WolfendenR.

    Biochemistry

    (1963)
  • JencksW.P. et al.

    J. Am. Chem. Soc.

    (1961)
  • KirschJ.F. et al.

    J. Am. Chem. Soc.

    (1964)
    KirschJ.F. et al.

    J. Am. Chem. Soc.

    (1964)
  • SrinzlM. et al.

    Biochem. Biophys. Res. Commun.

    (1973)
  • LipmannF.

    Science

    (1969)
  • NesbittJ.A. et al.

    J. Biol. Chem.

    (1968)
  • RobertsR.J.

    Nature New Biol.

    (1972)
  • FahnestockS. et al.

    Nature New Biol.

    (1971)
  • FahnestockS. et al.

    Biochemistry

    (1970)
  • PestkaS. et al.

    J. Biol. Chem.

    (1972)
  • MadenB.E.H. et al.

    Eur. J. Biochem.

    (1968)
  • MonroR.E. et al.
  • MonroR.E. et al.

    J. Mol. Biol.

    (1967)
  • LoftfieldR.B.
  • ZachauH.G. et al.
  • BruiceT.C. et al.
  • BenderM.C.

    Mechanisms of Homogeneous Catalysis from Protons to Proteins

    (1971)
  • PinckM. et al.

    Nature

    (1970)
  • YotP. et al.
  • LapidotY. et al.

    Biochem. Biophys. Acta

    (1967)
  • GlasoeP.K. et al.

    J. Phys. Chem.

    (1960)
  • Cited by (53)

    • Chemically Acylated tRNAs are Functional in Zebrafish Embryos

      2023, Journal of the American Chemical Society
    • Nonenzymatic assembly of active chimeric ribozymes from aminoacylated RNA oligonucleotides

      2022, Proceedings of the National Academy of Sciences of the United States of America
    View all citing articles on Scopus
    View full text