Materials Today
Volume 10, Issue 9, September 2007, Pages 46-58
Journal home page for Materials Today

Review
Fracture mechanics of protein materials

https://doi.org/10.1016/S1369-7021(07)70208-0Get rights and content
Under a Creative Commons license
open access

Proteins are the fundamental building blocks of a vast array of biological materials involved in critical functions of life, many of which are based on highly characteristic nanostructured arrangements of protein components that include collagen, alpha helices, or beta sheets. Bone, providing structure to our body, or spider silk, used for prey procurement, are examples of materials that have incredible elasticity, strength, and robustness unmatched by many synthetic materials. This is mainly attributed to their structural formation with molecular precision. We review recent advances in using large-scale atomistic and molecular modeling to elucidate the deformation and fracture mechanics of vimentin intermediate filaments (IFs), which are hierarchical self-assembled protein networks that provide structure and stability to eukaryotic cells. We compare the fracture and failure mechanisms of biological protein materials (BPMs) with those observed in brittle and ductile crystalline materials such as metals or ceramics. Our studies illustrate how atomistic-based multiscale modeling can be employed to provide a first principles based material description of deformation and fracture, linking nano- to macroscales.

Cited by (0)