Skip to main content
Log in

Lattice and non-lattice models of tumour angiogenesis

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In order to progress from the relatively harmless avascular state to the potentially lethal vascular state, solid tumours must induce the growth of new blood vessels from existing ones, a process called angiogenesis. The capillary growth centres around endothelial cells: there are several cell-based models of this process in the literature and these have reproduced some of the key microscopic features of capillary growth. The most common approach is to simulate the movement of leading endothelial cells on a regular lattice. Here, we apply a circular random walk model to the process of angiogenesis, and thus allow the cells to move independently of a lattice; the results display good agreement with empirical observations. We also run simulations of two lattice-based models in order to make a critical comparison of the different modelling approaches. Finally, non-lattice simulations are carried out in the context of a realistic model of tumour angiogenesis, and potential anti-angiogenic strategies are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, A. R. A. and M. A. J. Chaplain (1998). Continuous and discrete mathematical models of tumour-induced angiogenesis. Bull. Math. Biol. 60, 857–900.

    Article  MATH  Google Scholar 

  • Anderson, A. R. A., M. A. J. Chaplain, E. L. Newman, R. J. C. Steele and A. M. Thompson (2000). Mathematical modelling of tumour invasion and metastasis. J. Theor. Med. 2, 129–154.

    MATH  Google Scholar 

  • Anderson, A. R. A., B. D. Sleeman, I. M. Young and B. S. Griffiths (1997). Nematode movement along a chemical gradient in a structurally heterogeneous environment. 2. Theory. Fundan. Appl. Nematol. 20, 165–172.

    Google Scholar 

  • Ausprunk, D. H. and J. Folkman (1977). Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumour angiogenesis. Microvasc. Res. 14, 53–65.

    Article  Google Scholar 

  • Balding, D. and D. L. S. McElwain (1985). Mathematical modelling of tumour-induced capillary growth. J. Theor. Biol. 114, 53–73.

    Google Scholar 

  • Bowersox, J. C. and N. Sorgente (1982). Chemotaxis of aortic endothelial cells in response to fibronectin. Cancer Res. 42, 2547–2551.

    Google Scholar 

  • Brem, H. and J. Folkman (1975). Inhibition of tumour angiogenesis mediated by cartilage. J. Exp. Med. 141, 427–439.

    Article  Google Scholar 

  • Burn, D. S., (2000). Gene flow in agricultural systems and angiogenesis in tumour growth. PhD thesis, School of Mathematics, University of Leeds.

  • Carmeliet, P. and R. K. Jain (2000). Angiogenesis in cancer and other diseases. Nature 407, 249–257.

    Article  Google Scholar 

  • Carter, S. B. (1965). Principles of cell motility: the direction of cell movement and cancer invasion. Nature 208, 1183–1187.

    Google Scholar 

  • Chaplain, M. A. J., S. M. Giles, B. D. Sleeman and R. J. Jarvis (1995). A mathematical model for tumour angiogenesis. J. Math. Biol. 33, 744–770.

    Article  MATH  Google Scholar 

  • Chaplain, M. A. J. and A. M. Stuart (1993). A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor. IMA J. Math. Appl. Med. Biol. 10, 149–168.

    MATH  Google Scholar 

  • Clark, R. A. F., H. F. Dvorak and R. B. Colvin (1981). Fibronectin in delayed-type hypersensitivity skin reactions: associations with vessel permeability and endothelial cell activation. J. Immunol. 126, 787–793.

    Google Scholar 

  • Dallon, J. C. and H. G. Othmer (1997). A discrete cell model with adaptive signalling for aggregation of Dictyostelium discoideum. Phil. Trans. R. Soc. Lond. B 352, 391–417.

    Article  Google Scholar 

  • Davis, B. (1990). Reinforced random walk. Prob. Theor. Rel. Fields 84, 203–229.

    Article  MATH  Google Scholar 

  • Denekamp, J. and B. Hobson (1982). Endothelial cell proliferation in experimental tumours. Br. J. Cancer 46, 711–720.

    Google Scholar 

  • Folkman, J. (1971). Tumour angiogenesis: therapeutic implications. New Engl. J. Med. 285, 1182–1186.

    Article  Google Scholar 

  • Folkman, J. (1974). Tumour angiogenesis. Adv. Cancer Res. 19, 331–358.

    Google Scholar 

  • Folkman, J. and M. Klagsbrun (1987). Angiogenic factors. Science 235, 442–447.

    Google Scholar 

  • Han, Z. C. and Y. Liu (1999). Angiogenesis: state of the art. Int. J. Haematol. 70, 68–82.

    Google Scholar 

  • Hanahan, D. and J. Folkman (1996). Patterns and emerging mechanisms of the angiogenic switch during tumourigenesis. Cell 86, 353–364.

    Article  Google Scholar 

  • Hashizume, H., P. Baluk, S. Morikawa, J. W. McLean, G. Thurston, S. Roberge, R. K. Jain and D. M. McDonald (2000). Openings between defective endothelial cells explain tumour vessel leakiness. Am. J. Path. 156, 1363–1380.

    Google Scholar 

  • Hill, N. A. and D. P. Häder (1997). A biased random walk model for the trajectories of swimming micro-organisms. J. Theor. Biol. 186, 503–526.

    Article  Google Scholar 

  • Hunt, T. K., D. R. Knighton, K. K. Thakral, W. H. Goodson and W. S. Andrews (1984). Studies on inflammation and wound healing: angiogenesis and collagen synthesis stimulated in vivo by resident and activated macrophages. Surgery 96, 48–54.

    Google Scholar 

  • Klagsbrun, M. and P. A. D’Amore (1996). Vascular endothelial growth factor and its receptors. Cytokine Growth Factor Rev. 7, 259–270.

    Article  Google Scholar 

  • Konerding, M. A., W. Malkusch, B. Klapthor, C. van Ackern, E. Fait, S. A. Hill, C. Parkins, D. J. Chaplin, M. Presta and J. Denekamp (1999). Evidence for characteristic vascular patterns in solid tumours: quantitative studies using corrosion casts. Br. J. Cancer 80, 724–732.

    Article  Google Scholar 

  • Konerding, M. A., C. van Ackern, F. Steinberg and C. Streffer (1992). Combined morphological approaches in the study of network formation in tumour angiogenesis, in Angiogenesis: Key Principles—Science— Technology—Medicine, R. Steiner, P. B. Weisz and R. Langer (Eds), Basel: Birkhauser, pp. 40–58.

    Google Scholar 

  • Less, J. R., T. C. Skalak, E. M. Sevick and R. K. Jain (1991). Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res. 51, 265–273.

    Google Scholar 

  • Leung, D. W., G. Cachianes, W. J. Kuang, D. V. Goeddel and N. Ferrara (1989). Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309.

    Google Scholar 

  • Levine, H. A., S. Pamuk, B. D. Sleeman and M. Nilsen-Hamilton (2001a). A mathematical model of capillary formation and development in tumour angiogenesis: penetration into the stroma. Bull. Math. Biol. 63, 801–863.

    Article  Google Scholar 

  • Levine, H. A. and B. D. Sleeman (1997). A system of reaction diffusion equations arising in the theory of reinforced random walks. SIAM J. Appl. Math. 57, 683–730.

    Article  MathSciNet  MATH  Google Scholar 

  • Levine, H. A., B. D. Sleeman and M. Nilsen-Hamilton (2001b). Mathematical modelling of the onset of capillary formation initiating angiogenesis. J. Math. Biol. 42, 195–238.

    Article  MathSciNet  MATH  Google Scholar 

  • Liotta, L. A., P. S. Steeg and W. G. Stetler-Stevenson (1991). Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64, 327–336.

    Article  Google Scholar 

  • Moses, M. A. and R. Langer (1992). Metalloproteinase inhibition as a mechanism for the inhibition of angiogenesis, in Angiogenesis: Key Principles—Science—Technology—Medicine, R. Steiner, P. B. Weisz and R. Langer (Eds), Basel: Birkhauser, pp. 146–151.

    Google Scholar 

  • Muthukkaruppan, V. R. and R. Auerbach (1979). Angiogenesis in the mouse cornea. Science 205, 1416–1418.

    Google Scholar 

  • Muthukkaruppan, V. R., L. Kubai and R. Auerbach (1982). Tumour-induced neovascularisation in the mouse eye. J. Natl. Cancer Inst. 69, 699–708.

    Google Scholar 

  • Nicosia, R. F., E. Bonanno and M. Smith (1993). Fibronectin promotes the elongation of microvessels during angiogenesis in vitro. J. Cell Physiol. 154, 654–661.

    Article  Google Scholar 

  • Othmer, H. G. and A. Stevens (1997). Aggregation, blowup and collapse: the ABC’s of taxis and reinforced random walks. SIAM J. Appl. Math. 57, 1044–1081.

    Article  MathSciNet  MATH  Google Scholar 

  • Paweletz, N. and M. Kneirim (1989). Tumour-related angiogenesis. Crit. Rev. Oncol. Haematol. 9, 197–242.

    Google Scholar 

  • Pepper, M. S. (1997). Manipulating angiogenesis. Arterioscter Thromb. Vasc. Biol. 17, 605–619.

    Google Scholar 

  • Pepper, M. S. (2001). Extracellular proteolysis and angiogenesis. Thromb. Haemost. 86, 346–355.

    Google Scholar 

  • Pepper, M. S., D. Belin, R. Montesano, L. Orci and J. D. Vassalli (1990). Transforming growth factor-β1 modulates basic fibroblast growth factor-induced proteolytic and angiogenic properties of endothelial cells in vitro. J. Cell Biol. 111, 743–755.

    Article  Google Scholar 

  • Plank, M. J. and B. D. Sleeman (2003). A reinforced random walk model of tumour angiogenesis and anti-angiogenic strategies. IMA J. Math. Med. Biol. 20, 135–181.

    MATH  Google Scholar 

  • Plank, M. J., B. D. Sleeman and P. F. Jones (2003). A mathematical model of an in vitro experiment to investigate endothelial cell migration. J. Theor. Med. 4, 251–270.

    Google Scholar 

  • Reynolds, L. P., S. D. Killilea and D. A. Redmer (1992). Angiogenesis in the female reproductive cycle. FASEB J. 6, 886–892.

    Google Scholar 

  • Risau, V. (1997). Mechanisms of angiogenesis. Nature 386, 671–674.

    Article  Google Scholar 

  • Schirrmacher, V. (1985). Cancer metastasis: experimental approaches, theoretical concepts and impacts for treatment strategies. Adv. Cancer Res. 43, 1–73.

    Article  Google Scholar 

  • Sholley, M. M., G. P. Ferguson, H. R. Seibel, J. L. Montour and J. D. Wilson (1984). Mechanisms of neovascularisation. Lab. Invest. 51, 624–634.

    Google Scholar 

  • Shweiki, D., A. Itin, D. Soffer and E. Keshet (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845.

    Article  Google Scholar 

  • Sleeman, B. D. and I. P. Wallis (2002). Tumour induced angiogenesis as a reinforced random walk: modelling capillary network formation without endothelial cell proliferation. J. Math. Comp. Modelling 36, 339–358.

    Article  MathSciNet  MATH  Google Scholar 

  • Stokes, C. L. and D. A. Lauffenburger (1991). Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol. 152, 377–403.

    Google Scholar 

  • Unemori, E. N., N. Ferrara, E. A. Bauer and E. P. Amento (1992). Vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cells. J. Cell Physiol. 153, 557–562.

    Article  Google Scholar 

  • Vajkoczy, P., M. Farhadi, A. Gaumann, R. Heidenreich, R. Erber, A. Wunder, J. C. Tonn, M. D. Menger and G. Breier (2002). Microtumour growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2 and angiopoietin-2. J. Clin. Invest. 109, 777–785.

    Article  Google Scholar 

  • Vernon, R. B. and E. H. Sage (1999). A novel, quantitative model for study of endothelial cell migration and sprout formation within three-dimensional collagen matrices. Microvasc. Res. 57, 118–133.

    Article  Google Scholar 

  • Yancopoulos, G. D., S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand and J. Holash (2000). Vascular-specific growth factors and blood vessel formation. Nature 407, 242–249.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Plank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plank, M.J., Sleeman, B.D. Lattice and non-lattice models of tumour angiogenesis. Bull. Math. Biol. 66, 1785–1819 (2004). https://doi.org/10.1016/j.bulm.2004.04.001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2004.04.001

Keywords

Navigation