Skip to main content

Advertisement

Log in

A deterministic model of growth factor-induced angiogenesis

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Understanding the formation and structure of a capillary network is critical for any reparative strategy since the capillary network dictates tissue survival, hemodynamics, and mass transport. Vascular assembly and patterning has largely been studied using a reductionist approach where a particular endothelial cell molecular pathway or cellular mechanism is investigated as a relatively closed system. This trend of research has yielded a staggering wealth of genes, proteins, and cells that play critical roles in angiogenesis and some have resulted in successful targeted angiogenic therapies. However, these genes, proteins, and cells do not exist in discrete closed systems, rather they are intimately coupled across spatial and temporal dimensions. Designing experiments to study a single or group of perturbations is fraught with confounding complications. An integrative tool is required that incorporates gene, protein, and cell information and appropriately describes the complex systems behavior of vascular assembly and patterning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, A., Chaplain, M., 1998. Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–900.

    Article  MATH  Google Scholar 

  • Arbogast, T., Dawson, C., Keenan, P., Wheeler, M., Yotov, L., 1998. Enhanced cell-centered finite differences for elliptic equations on general geometry. SIAM J. Sci. Comput. 19, 404–425.

    Article  MathSciNet  Google Scholar 

  • Arbogast, T., Wheeler, M., Yotov, L., 1997. Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Sci. Comput. 34, 828–852.

    MathSciNet  MATH  Google Scholar 

  • Arnold, F., West, D., 1991. Angiogenesis in wound healing. Pharmacol. Ther. 52, 407–422.

    Article  Google Scholar 

  • Balding, D., McElwain, D., 1985. A mathematical model of tumour-induced capillary growth. J. Theor. Biol. 114, 53–73.

    Google Scholar 

  • Birdwell, C., Brasier, A., Taylor, L., 1980. Two-dimensional peptide mapping of fibronectin from bovine aortic endothelial cells and bovine plasma. Biochem. Biophys. Res. Commun. 97, 574–581.

    Article  Google Scholar 

  • Byrne, H., Chaplain, M., 1995. Mathematical models for tumour angiogenesis: Numerical simulations and nonlinear wave solutions. Bull. Math. Biol. 57, 461–486.

    Article  MATH  Google Scholar 

  • Chaplain, M., 1995. The mathematical modelling of tumour angiogenesis and invasion. Acta Biotheor. 43, 387–402.

    Article  Google Scholar 

  • Chaplain, M., Stuart, A., 1993. A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor. IMA J. Math. Appl. Med. Biol. 10, 149–168.

    MATH  Google Scholar 

  • Folkman, J., 1995. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, 21–23.

    Article  Google Scholar 

  • Frye, C., Patrick Jr., C., 2002. Isolation and culture of rat microvascular endothelial cells. J. In Vitro Cell. Dev. Biol. 38, 208–212.

    Article  Google Scholar 

  • Graham, C., Lala, P., 1992. Mechanisms of placental invasion of the uterus and their control. Biochem. Cell Biol. 70, 867–874.

    Article  Google Scholar 

  • Kendall, R., Rutledge, R., Mao, X., Tebben, A., Hungate, R., Thoma, K., 1999. Vascular endothelial growth factor receptor KDR tyrosine kinase activity is increased by autophosphorylation of two activation loop tryosine residues. Biol. Chem. 274, 6453–6460.

    Article  Google Scholar 

  • Korohoda, W., Czyz, J., 1994. Efficacy of the Frame and Hu mathematical model for the quantitative analysis of agents influencing growth of chick embryo fibroblasts. Folia Histochem. Cytobiol. 32, 113–118.

    Google Scholar 

  • Levine, H., Pamuk, S., Sleeman, B., Nilsen-Hamilton, M., 2001. Mathematical modeling of capillary formation and development in tumor angiogenesis: Penetration into stroma. Bull. Math. Biol. 63, 801–863.

    Article  Google Scholar 

  • Liotta, L., Saidel, G., Kleinerman, J., 1977. Diffusion model of tumor vascularization. Bull. Math. Biol. 39, 117–128.

    Article  Google Scholar 

  • Maggelakis, S., Savakis, A., 1996. A mathematical model of growth factor induced capillary growth in the retina. Math. Comput. Modelling 24, 33–41.

    Article  MathSciNet  MATH  Google Scholar 

  • Maggelakis, S., Savakis, A., 1999. A mathematical model of retinal neovascularization. Math. Comput.Modelling 29, 91–97.

    Article  MATH  Google Scholar 

  • McDougall, S., Anderson, A., Chaplain, M., Sheratt, J., 2002. Mathematical modelling of flow through vascular networks: Implications for tumour-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol. 64, 673–702.

    Article  Google Scholar 

  • Orme, M., Chaplain, M., 1996. A mathematical model of the first steps of tumour-related angiogenesis: capillary sprout formation and secondary branching. IMA J. Math. Appl. Med. 14, 189–205.

    Google Scholar 

  • Paku, S., Paweletz, N., 1991. First steps of tumor-related angiogenesis. Lab. Invest. 65, 334–346.

    Google Scholar 

  • Petter, G., Chaplain, M., McElwain, D., Byrne, H., 1996. On the role of angiogenesis in wound healing. Proc. R. Soc. Lond. 1487–1493.

  • Shweiki, D., Itin, A., Soffer, D., Keshet, E., 1992. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845.

    Article  Google Scholar 

  • Spooner, R., Friedlos, F., Maycroft, K., Stribbling, S., Rousse, J., Brueggen, J., Stolz, B., O’Reilly, T., Wood, J., Matter, A., Marais, R., Springer, C., 2003. A novel vascular endothelial growth factor-directed therapy that selectively activates cytotoxic prodrug. Br. J. Cancer 88, 1622–1630.

    Article  Google Scholar 

  • Stokes, C., Lauffenburger, D., 1991. Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol. 152, 377–403.

    Google Scholar 

  • Stokes, C., Lauffenburger, D., Williams, S., 1991. Migration of individual microvessel endothelial cells: stochastic model and parameter measurement. J. Cell Sci. 99, 419–430.

    Google Scholar 

  • Zawicki, D., Jain, R., Schmid-Schoenbein, G., Chien, S., 1981. Dynamics of neovascularization in normal tissue. Microvasc. Res. 21, 27–47.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles W. Patrick Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, S., Wheeler, M.F., Obeyesekere, M. et al. A deterministic model of growth factor-induced angiogenesis. Bull. Math. Biol. 67, 313–337 (2005). https://doi.org/10.1016/j.bulm.2004.07.004

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.bulm.2004.07.004

Keywords

Navigation