Atomistic-based continuum representation of the effective properties of nano-reinforced epoxies

https://doi.org/10.1016/j.ijsolstr.2010.03.009Get rights and content
Under an Elsevier user license
open archive

Abstract

In this paper, an atomistic-based representative volume element (RVE) is developed to characterize the behavior of carbon nanotube (CNT) reinforced amorphous epoxies. The RVE consists of the carbon nanotube, the surrounding epoxy matrix, and the CNT/epoxy interface. An atomistic-based continuum representation is adopted throughout all the components of the RVE. By equating the associated strain energies under identical loading conditions, we were able to homogenize the RVE into a representative fiber. The homogenized RVE was then employed in a micromechanical analysis to predict the effective properties of the newly developed CNT-reinforced amorphous epoxy. Numerical examples show that the effect of volume fraction, orientation, and aspect ratio of the continuous fibres on the properties of the CNT-reinforced epoxy adhesives can be significant. These results have a direct bearing on the design and development of nano-tailored adhesives for use in structural adhesive bonds.

Keywords

Atomistic-based continuum
Nano-reinforced epoxies
Representative volume element

Cited by (0)