Elsevier

Neuropsychologia

Volume 47, Issue 1, January 2009, Pages 83-90
Neuropsychologia

Modulation of the error-related negativity by induction of short-term negative affect

https://doi.org/10.1016/j.neuropsychologia.2008.08.016Get rights and content

Abstract

The present study investigates whether performance monitoring and its electrophysiological indices in a choice reaction time task are modulated by affective information presented briefly prior to the critical stimuli. A flanker task known to elicit a sufficient number of performance errors was used and prior to each flanker stimulus a neutral, pleasant or unpleasant picture from the International Affective Picture System (IAPS) was shown. While behavioral performance to the flanker stimuli was hardly affected by the preceding affective information, the error-related negativity (ERN) of the event-related potential was modulated by affective information: Unpleasant IAPS pictures preceding a performance error led to an increased ERN amplitude compared to trials with neutral and pleasant IAPS pictures. These trial-by-trial modulations of electrophysiological markers of performance monitoring are discussed in terms of the possible influence of affective stimuli on monaminergic neuromodulatory transmitter systems.

Introduction

Affect influences how we perceive and act upon our environment. It has been shown that positive affect increases problem solving (Isen, 2001, Isen et al., 1987), memory performance (Lee, & Sternthal, 1999), executive attention (Ashby, Valentin, & Turken, 2002), decision making (Isen, 2001) and a variety of other cognitive tasks, while the influence of negative affect is more diffuse and difficult to predict (Ashby, Isen, & Turken, 1999; Mitchell, & Phillips, 2007). The present investigation is concerned with the affective modulation of action monitoring. In particular, we are interested in the affective modulation of a specific component in the event-related brain potential (ERP), the error-related negativity (ERN or Ne) (Falkenstein, Hohnsbein, Hoormann, & Blanke, 1991; Gehring, Goss, Coles, Meyer, & Donchin, 1993). It is observed with a frontocentral distribution and a peak-latency between 50 and 100 ms after the commission of an error. Electrophysiological (e.g., van Veen and Carter, 2002a, van Veen and Carter, 2002b) and brain imaging techniques (Marco-Pallares, Müller, & Münte, 2007; Ridderinkhof, Ullsperger, Crone, & Nieuwenhuis, 2004) agree that the ERN emerges in the anterior cingulate cortex (ACC).

Long-lasting emotional and motivational factors have also been shown previously to modulate ERN amplitude: It is increased in subjects suffering from increased anxiety and negative affect (Hajcak et al., 2003a, Hajcak et al., 2004). In an early study Luu, Collins, and Tucker (2000) similarly found that college students who were high on negative affect and negative emotionality displayed larger ERN amplitudes compared to participants who displayed low negative affect and emotionality. This effect decreased, however, over the course of the experiment, which was interpreted as signifying disengagement of the high negative affect participants from the task. More globally, the results were interpreted as evidence for an interaction between affect and associated behavioral patterns with frontal lobe executive functions. In patients suffering from obsessive-compulsive disorder who likewise display a high negative affect, several studies have reported an increased ERN amplitude (Gehring, Himle, & Nisenson, 2000; Hajcak, & Simons, 2002; Johannes et al., 2001a, Johannes et al., 2001b; Münte et al., 2008). There are also some indirect indications that long-lasting positive affect modulates ERN amplitude: Alcohol, which induces pleasant feelings, and oxazepam, a benzodiazepine derivative with anxiolytic properties reduce ERN amplitude (Johannes et al., 2001a, Johannes et al., 2001b, Riba et al., 2005a, Riba et al., 2005b; Ridderinkhof et al., 2002). These pharmacological studies have to be interpreted with caution, however, as a direct action of these agents (e.g., by enhancing the activity of cortical interneurons) on the ERP amplitudes rather than an indirect action via their influence on affective factors is a possibility. To summarize, stable and replicable influences of negative and – to a lesser degree – positive affect on action monitoring indexed by the ERN have been shown.

The influence of short lasting affective modulations has been less intensively studied and has led to contradictory and counterintuitive results. Larson, Perlstein, Stigge Kaufman, Kelly, and Dotson (2006) presented a flanker stimulus superimposed on neutral, unpleasant or pleasant pictures taken from the International Affective Picture System (IAPS) and, in contrast to what has been observed with longer lasting affective states (see above), observed an increase in ERN amplitude for pleasant compared to neutral and unpleasant background pictures. The authors interpreted this finding as possibly indicating a mismatch between the positive affect induced by the background picture and the negative event constituted by the error response. Because of the long presentation of the IAPS pictures and the fact that the flanker stimuli were presented during the presentation of background pictures, an alternative explanation might be that the unpleasant background pictures might have drawn attention away from the flanker stimulus and thus might have precluded an increase of ERN amplitude. Anxiety induced by a tarantula spider close to the phobic subject did not alter ERN amplitude (Moser, Hajcak, & Simons, 2005). However, if negative affect is induced by external stimuli, subjects allocate attentional resources towards the threatening cue. This might decrease error significance and counteract fear-induced effects.

In the present study we reexamined this issue by presenting pleasant, unpleasant and neutral IAPS pictures immediately prior to flanker stimuli for which the subjects had to perform a choice reaction time task1.

In light of the previous studies on the influence of longer lasting negative (Hajcak et al., 2003a, Hajcak et al., 2004, Luu et al., 2000) and positive (Johannes et al., 2001a, Johannes et al., 2001b, Riba et al., 2005a, Riba et al., 2005b, Ridderinkhof et al., 2002) affect on ERN and action monitoring, we formulated two hypotheses:

The first hypothesis stated that ERN amplitude to performance errors should be increased following the presentation of unpleasant IAPS pictures. The second hypothesis stated that ERN amplitude should be decreased after the presentation of pleasant IAPS pictures.

The primary focus of the experiment is thus on the (possible) influence of the valence of the preceding IAPS picture on the amplitude of the ERN. A second prominent effect in the flanker task is the so-called N2 component present in stimulus-locked averages that differentiates incongruent (HHSHH, SSHSS) from congruent (SSSSS, HHHHH) stimuli and has been interpreted as an index of response conflict (van Veen and Carter, 2002a, van Veen and Carter, 2002b; but see Wendt, Heldmann, Münte, & Kluwe, 2007). Like the ERN, this component has been attributed to the medial prefrontal cortex. Therefore it was of interest whether any valence-induced changes in the ERN might also be found for the N2 component.

Since the response to emotional stimuli has been shown to vary as a function of participants’ gender and to be weaker in men (Campbell et al., 2002, Kemp et al., 2004; Wrase et al., 2003), only women were enrolled in the present experiment.

Section snippets

Participants

Twenty-two women (mean age 24 years, range from 19 to 36) contributed data to the behavioral and ERP analyses. Two additional subjects were excluded because they committed not enough errors to generate reliable ERPs for erroneous responses. Four further subjects were excluded due to excessive and uncorrectable artifacts. Consent was given and subjects were reimbursed (7 € per hour).

Stimuli and procedure

A trial comprised the following sequence (timing is provided in brackets): fixation cross (varying duration

Behavioral data

Reaction time data are illustrated in Fig. 1 (upper panel). Erroneous responses were faster than correct responses in both experimental halves (correctness F (1,21) = 94.5, p < 0.001; correctness × half n.s.). Participants were faster in the first compared the second error half (F (1,21) = 31.5, p < 0.001).

There was a small, but significant main effect of valence: participants responded somewhat slower after seeing unpleasant pictures (valence: (F (2,42) = 5.20, p < 0.01), especially when responses were

Discussion

The main result of the present investigation is that affective information delivered by IAPS pictures modulated ERN amplitude especially during the first part of the experiment. This result extends previous findings that longer lasting negative affect can interact with executive processes, in particular action monitoring (Hajcak, & Simons, 2002; Hajcak et al., 2003a, Hajcak et al., 2004, Luu et al., 2000) by showing that such interactions might take place on a very short time scale and even on

Acknowledgements

We would like to thank Nadine Strien and Peggy Tausche for help in data recording and analysis. Research of JR, TG and TFM is financially supported by various grants from the German Research Agency (DFG); TFM is also supported by the Volkswagen-Stiftung.

References (61)

  • G. Hajcak et al.

    Error-related psychophysiology and negative affect

    Brain and Cognition

    (2004)
  • A.M. Isen

    An influence of positive affect on decision making in complex situations: Theoretical issues with practical implications

    Journal of Consumer Psychology

    (2001)
  • S. Johannes et al.

    Discrepant target detection and action monitoring in obsessive–compulsive disorder

    Psychiatry Research

    (2001)
  • A.H. Kemp et al.

    Gender differences in the cortical electrophysiological processing of visual emotional stimuli

    Neuroimage

    (2004)
  • R.L. Mitchell et al.

    The psychological, neurochemical and functional neuroanatomical mediators of the effects of positive and negative mood on executive functions

    Neuropsychologia

    (2007)
  • J. Riba et al.

    A neurophysiological study of the detrimental effects of alprazolam on human action monitoring

    Cognitive Brain Research

    (2005)
  • N.K. Smith et al.

    May I have your attention, please: Electrocortical responses to positive and negative stimuli

    Neuropsychologia

    (2003)
  • J.F. Thayer et al.

    A model of neurovisceral integration in emotion regulation and dysregulation

    Journal of Affective Disorders

    (2000)
  • V. van Veen et al.

    The anterior cingulate as a conflict monitor: fMRI and ERP studies

    Physiology and Behavior

    (2002)
  • J. Wrase et al.

    Gender differences in the processing of standardized emotional visual stimuli in humans: A functional magnetic resonance imaging study

    Neuroscience Letters

    (2003)
  • G.F. Ashby et al.

    A model of dopamine modulated cortical activation

    Neural Networks

    (2003)
  • G.F. Ashby et al.

    A neuropsychological theory of positive affect and its influence on cognition

    Psychological Review

    (1999)
  • G.F. Ashby et al.

    The effects of positive affect and arousal on working memory and executive attention

  • E.E. Benarroch

    The central autonomic network

  • B. Berger

    Comparative neurochemical analysis of the frontal cortex, with special emphasis on the dopamine innervation of the primary motor cortex, lateral prefrontal cortex and the anterior cingulate cortex

  • M.M. Bradley

    Emotion and motivation

  • E.R. de Bruijn et al.

    Drug-induced stimulation and suppression of action monitoring in healthy volunteers

    Psychopharmacology

    (2004)
  • G. Dreisbach et al.

    How positive affect modulates cognitive control: Reduced perseveration at the cost of increased distractibility

    Journal of Experimental Psychology: Learning, Memory and Cognition

    (2004)
  • G. Dreisbach et al.

    Dopamine and cognitive control: The influence of spontaneous eyeblink rate and dopamine gene polymorphisms on perseveration and distractibility

    Behavioral Neuroscience

    (2005)
  • W.J. Gehring et al.

    Functions of the medial frontal cortex in the processing of conflict and errors

    Journal of Neuroscience

    (2001)
  • Cited by (101)

    View all citing articles on Scopus
    View full text