Cell Stem Cell
Volume 12, Issue 3, 7 March 2013, Pages 329-341
Journal home page for Cell Stem Cell

Article
BCL-2 Inhibition Targets Oxidative Phosphorylation and Selectively Eradicates Quiescent Human Leukemia Stem Cells

https://doi.org/10.1016/j.stem.2012.12.013Get rights and content
Under an Elsevier user license
open archive

Summary

Most forms of chemotherapy employ mechanisms involving induction of oxidative stress, a strategy that can be effective due to the elevated oxidative state commonly observed in cancer cells. However, recent studies have shown that relative redox levels in primary tumors can be heterogeneous, suggesting that regimens dependent on differential oxidative state may not be uniformly effective. To investigate this issue in hematological malignancies, we evaluated mechanisms controlling oxidative state in primary specimens derived from acute myelogenous leukemia (AML) patients. Our studies demonstrate three striking findings. First, the majority of functionally defined leukemia stem cells (LSCs) are characterized by relatively low levels of reactive oxygen species (termed “ROS-low”). Second, ROS-low LSCs aberrantly overexpress BCL-2. Third, BCL-2 inhibition reduced oxidative phosphorylation and selectively eradicated quiescent LSCs. Based on these findings, we propose a model wherein the unique physiology of ROS-low LSCs provides an opportunity for selective targeting via disruption of BCL-2-dependent oxidative phosphorylation.

Highlights

► LSC are prospectively isolated from the bulk tumor on the basis of low ROS levels ► Metabolic dependencies discriminating LSCs, bulk tumor, and normal HSCs are described ► BCL-2 is identified as a regulator of LSC mitochondrial respiration ► BCL-2 pharmacologic inhibitors demonstrate LSC-specific targeting

Cited by (0)