Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-20T07:48:57.464Z Has data issue: false hasContentIssue false

Genetic studies on mutations in species A and B of the Anopheles gambiae complex*

Published online by Cambridge University Press:  14 April 2009

G. F. Mason
Affiliation:
Ross Institute of Tropical Hygiene, London, W.C.1
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A number of mutants affecting changes in the pigment of larval and adult An. gambiae are reported.

2. Two other pigment characters are also described. One of these, diamond, is probably inherited as a single factor.

3. Two of the mutants are sex-linked and the experimental results show An. gambiae to have a Drosophila form of sex-linkage.

4. The sex-linked white-eye mutant is shown to be epistatic to the gene for collar and the characters diamond and red stripe.

5. Attention is drawn to the difference in sex-linkage between An. gambiae, and C. pipiens and Ae. aegypti which may indicate different methods of sex-determination.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1967

References

REFERENCES

Davidson, G. (1956). Insecticide resistance in Anopheles gambiae Giles: a case of simple Mendelian inheritance. Nature, Lond. 178, 863864.CrossRefGoogle Scholar
Davidson, G. & Jackson, C. E. (1962). Incipient speciation in Anopheles gambiae Giles. Bull. Wld Hlth Org. 27, 303305.Google ScholarPubMed
Davidson, G. & Mason, G. F. (1963). Genetics of mosquitoes. A. Rev. Ent. 8, 177196.CrossRefGoogle ScholarPubMed
Gilchrist, B. M. & Haldane, J. B. S. (1946). Sex linkage in Culex molestus. Experientia, 2, 372.CrossRefGoogle ScholarPubMed
Gilchrist, B. M. & Haldane, J. B. S. (1947). Sex linkage and sex determination in a mosquito, Culex molestus. (Univ. Coll) Hereditas, 33, 175190.CrossRefGoogle Scholar
Grell, S. M. (1946). Cytological studies on Culex I. Somatic reduction divisions. Genetics. 31, 7794.CrossRefGoogle ScholarPubMed
Kitzmiller, J. B. (1963). Mosquito cytogenetics. A review of the literature, 1953–62. Butt. Wld Hlth Org. 29 (3), 345355.Google ScholarPubMed
Laven, H. (1957). Vererbung durch Kerngene und das Problem der Ausserkaryotischen Vererbung bei Culex pipiens. Z. indukt. Abstamm.- u. VererbLehre. 88, 443477.Google Scholar
Mason, G. F. (1964). Cytogenetics and Genetics of Strains in the Anopheles gambiae Complex. Ph.D. Thesis, University of London.Google Scholar
Mason, G. F. & Davidson, G. (1966). Morphological mutants in anopheline mosquitoes. Laboratory meeting. Trans. B. Soc. trop. Med. Hyg. 60 (1), 20.Google Scholar
McClelland, G. A. H. (1966). Sex linkage at two loci affecting eye pigment in the mosquito Aedes aegypti (Diptera: Culcidae). Can. J. Genet. Cytol. 7 (2), 192198.CrossRefGoogle Scholar
Mcdaniel, J. M. & Horsfall, W. R. (1957). Induced copulation of Aedine mosquitoes. Science, N. Y. 125, 745.CrossRefGoogle ScholarPubMed
Rai, K. S. & Craig, G. B. (1961). A study of the karyotypes of some mosquitoes. Genetics, 46, 891.Google Scholar
Wild, A. (1963). A red eye colour mutation in Culex pipiens after X-irradiation. Nature, Land. 200, 917918.CrossRefGoogle ScholarPubMed