Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T10:46:25.794Z Has data issue: false hasContentIssue false

Efficacy and specificity of RNA interference in larval life-stages of Ostertagia ostertagi

Published online by Cambridge University Press:  31 July 2006

A. VISSER
Affiliation:
Department of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium
P. GELDHOF
Affiliation:
Moredun Research Institute, Pentlands Science Park, Penicuik, Bush Loan, Midlothian, UK
V. DE MAERE
Affiliation:
Department of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium
D. P. KNOX
Affiliation:
Moredun Research Institute, Pentlands Science Park, Penicuik, Bush Loan, Midlothian, UK
J. VERCRUYSSE
Affiliation:
Department of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium
E. CLAEREBOUT
Affiliation:
Department of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium

Abstract

RNA interference (RNAi) on parasitic nematodes has been described as successful and useful for the identification of novel drug and vaccine candidates. In this study we have evaluated this technology on the cattle parasite Ostertagia ostertagi. Eight different genes were targeted in L1 and L3 O. ostertagi larvae, by electroporation and soaking in dsRNA respectively. Down-regulation of target transcript levels was evaluated by semi-quantitative reverse transcriptase (RT) PCR. In L3 larvae, variable decreases in mRNA levels were observed for 5 genes, ranging from a complete knock down (tropomyosin, β-tubulin) to a minor decrease (ATPsynthase, superoxide dismutase, polyprotein allergen). However, repeated experiments indicated that effects were sometimes difficult to reproduce. RNAi for ubiquitin, a transthyretin-like protein and a 17 kDa excretion secretion (ES) protein never resulted in a knock down of the transcript. The mRNA levels of 7 non-target genes showed no difference between larvae soaked in C. elegans control dsRNA versus O. ostertagi tropomyosin dsRNA, supporting that the observed reductions are specific for the target gene. Electroporation of L1 larvae proved to be less effective. Reductions in mRNA levels were only noticed for 2 genes and were not reproducible. In conclusion, the results indicate that the RNAi pathway is probably present in O. ostertagi but that the current RNAi techniques can not be used as a reliable screening method.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aboobaker, A. A. and Blaxter, M. L. ( 2003). Use of RNA interference to investigate gene function in the human filarial nematode parasite Brugia malayi. Molecular and Biochemical Parasitology 129, 4151. DOI: 10.1016/S0166-6851(03)00092-6.CrossRefGoogle Scholar
Britton, C. and Murray, L. ( 2004). Cathepsin L protease (CPL-1) is essential for yolk processing during embryogenesis in Caenorhabditis elegans. Journal of Cell Science 117, 51335143.CrossRefGoogle Scholar
Ford, L., Guiliano, D. B., Oksov, Y., Debnath, A. K., Liu, J., Williams, S. A., Blaxter, M. L. and Lustigman, S. ( 2005). Characterisation of a novel serine protease inhibitor, Ov-SPI, from Onchocerca volvulus, with potential multifunctional roles during development of the parasite. Journal of Biological Chemistry 280, 4084540856. DOI:10.1074/jbc.M504434200.CrossRefGoogle Scholar
Geldhof, P., Claerebout, E., Knox, D. P., Agneessens, J. and Vercruysse, J. ( 2000). Proteinases released in vitro by the parasitic stages of the bovine abomasal nematode Ostertagia ostertagi. Parasitology 121, 639647.CrossRefGoogle Scholar
Geldhof, P., Murray, L., Couthier, A., Gilleard, J. S., McLauchlan, G., Knox, D. P. and Britton, C. ( 2006). Testing the efficacy of RNA interference in Haemonchus contortus. International Journal for Parasitology 36, 801810. DOI: 10.1016/j.ijpara.2005.12.004.CrossRefGoogle Scholar
Hashmi, S., Britton, C., Liu, J., Guiliano, D. B., Oksov, Y. and Lustigman, S. ( 2002). Cathepsin L is essential for embryogenesis and development of Caenorhabditis elegans. Journal of Biological Chemistry 277, 34773486. DOI: 10.1074/jbc.M106117200.CrossRefGoogle Scholar
Hubert, J. and Kerboeuf, D. ( 1984). A new method for culture of larvae used in diagnosis of ruminant gastrointestinal strongylosis – comparison with fecal cultures. Canadian Journal of Comparative Medicine 48, 6371.Google Scholar
Hussein, A. S., Kichenin, K. and Selkirk, M. E. ( 2002). Suppression of secreted acetylcholinesterase expression in Nippostrongylus brasiliensis by RNA interference. Molecular and Biochemical Parasitology 122, 9194. DOI: 10.1016/S0166-6851(02)00068-3.CrossRefGoogle Scholar
Islam, M. K., Miyoshi, T., Yamada, M. and Tsuji, N. ( 2005). Pyrophosphatase of the roundworm Ascaris suum plays an essential role in the worm's molting and development. Infection and Immunity 73, 19952004. DOI: 10.1128/IAI.73.4.1995-2004.2005.CrossRefGoogle Scholar
Issa, Z., Grant, W. N., Stasiuk, S. and Shoemaker, C. B. ( 2005). Development of methods for RNA inhibition in the sheep gastrointestinal parasite, Trichostrongylus colubriformis. International Journal for Parasitology 35, 935940. DOI: 10.1016:j.ijpara.2005.06.001.CrossRefGoogle Scholar
Kamath, R. S., Fraser, A. G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, A., Le Bot, N., Moreno, S., Sohrmann, M., Welchman, D. P., Zipperlen, P. and Ahringer, J. ( 2003). Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, London 421, 231237. DOI: 10.1038/nature01278.CrossRefGoogle Scholar
Kotze, A. C. and Bagnall, N. H. ( 2006). RNA interference in Haemonchus contortus: Suppression of beta-tubulin gene expression in L3, L4 and adult worms in vitro. Molecular and Biochemical Parasitology 145, 101110. DOI: 10.106:j.molbiopara.2005.09.012.CrossRefGoogle Scholar
Kuwabara, P. E. and Coulson, A. ( 2000). RNAi – Prospects for a general technique for determining gene function. Parasitology Today 16, 347349. DOI:10.1016/S0169-475.(00)01677-X.CrossRefGoogle Scholar
Lustigman, S., Zhang, J., Liu, J., Oksov, Y. and Hashmi, S. ( 2004). RNA interference targeting cathepsin L and Z-like cysteine proteases of Onchocerca volvolus confirmed their essential function during L3 molting. Molecular and Biochemical Parasitology 138, 165170. DOI: 10.1016/j.molbiopara.2004.08.003.CrossRefGoogle Scholar
Maizels, R. M., Holland, M. J., Falcone, F. H., Zang, X. X. and Yazdanbakhsh, M. ( 1999). Vaccination against helminth parasites – the ultimate challenge for vaccinologists? Immunological Reviews 171, 125147.Google Scholar
Pfarr, K., Heider, U. and Hoerauf, A. ( 2006). RNAi mediated silencing of actin expression in adult Litomosoides sigmodontis is specific, persistent and results in a phenotype. International Journal for Parasitology 36, 661669. DOI: 10.1016/j.ijpara.2006.01.010.CrossRefGoogle Scholar
Timmons, L., Court, D. L. and Fire, A. ( 2001). Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103112.CrossRefGoogle Scholar