Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T18:58:40.245Z Has data issue: false hasContentIssue false

Voltage gating of ion channels

Published online by Cambridge University Press:  17 March 2009

F. J. Sigworth
Affiliation:
Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven CT 06510, USA

Extract

Voltage-gated ion channels are membrane proteins that play a central role in the propagation and transduction of cellular signals (Hille, 1992). Calcium ions entering cells through voltage-gated calcium channels serve as the trigger for neurotransmitter release, muscle contraction, and the release of hormones. Voltage-gated sodium channels initiate the nerve action potential and provide for its rapid propagation because the ion fluxes through these channels regeneratively cause more channels to open.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almers, W. (1978). Gating currents and charge movements in excitable membranes. Reviews of Physiology Biochemistry & Pharmacology 82, 96190.CrossRefGoogle ScholarPubMed
Andersen, O. S. & Koeppe, R. 2. (1992). Molecular determinants of channel function. Physiol. Rev. 72, S8S158.CrossRefGoogle ScholarPubMed
Anderson, C. S., MacKinnon, R., Smith, C. & Miller, C. (1988). Charybdotoxin block of single Ca2+-activated K+ channels. Effects of channel gating, voltage, and ionic strength. J gen. Physiol. 91, 317333.CrossRefGoogle ScholarPubMed
Armstrong, C. M. & Bezanilla, F. (1977). Inactivation of the sodium channel. II. Gating current experiments. J. gen. Physiol. 70, 567590.CrossRefGoogle ScholarPubMed
Armstrong, C. M. (1981). Sodium channels and gating currents. Physiol. Rev. 61, 644683.CrossRefGoogle ScholarPubMed
Armstrong, C. M. (1992). Voltage-dependent ion channels and their gating. Physiol. Rev. 72, S5S13.CrossRefGoogle ScholarPubMed
Armstrong, C. M. & Cota, G. (1991). Calcium ion as a cofactor in Na channel gating. Proc. natn. Acad. Sci. U.S.A. 88, 65286531.CrossRefGoogle ScholarPubMed
Armstrong, C. M. & Matteson, D. R. (1986). The role of calcium ions in the closing of K channels. J. gen. Physiol. 87, 817832.CrossRefGoogle ScholarPubMed
Auld, V. J., Goldin, A. L., Krafte, D. S., Catterall, W. A., Lester, H. A., Davidson, N. & Dunn, R. J. (1990). A neutral amino acid change in segment 11S4 dramatically alters the gating properties of the voltage-dependent sodium channel. Proc. natn. Acad. Sci. U.S.A. 87, 323327.CrossRefGoogle Scholar
Bezanilla, F. & Armstrong, C. M. (1977). Inactivation of the sodium channel. I. Sodium current experiments. J. gen. Physiol. 70, 549566.CrossRefGoogle ScholarPubMed
Bezanilla, F., Perozo, E., Papazian, D. M. & Stefani, E. (1991). Molecular basis of gating charge immobilization in Shaker potassium channels. Science, N. Y. 154, 679683.CrossRefGoogle Scholar
Brown, A. M. (1993). Functional bases for interpreting amino acid sequences of voltage dependent K channels. Annu. Rev. Biophys. Biomol. Struct. 22, 173198.CrossRefGoogle ScholarPubMed
Cahalan, M. D. & Almers, W. (1979). Block of sodium conductance and gating current in squid giant axons poisoned with quaternary strychnine. Biophys. J. 27, 5773.CrossRefGoogle ScholarPubMed
Carbone, E., Fioravanti, R., Prestipino, G. & Wanke, E. (1978). Action of extracellular pH on Na+ and K+ membrane currents in the giant axon of Loligo vulgaris. J. Mem. Biol. 43, 295315.CrossRefGoogle Scholar
Carbone, E., Testa, P. L. & Wanke, E. (1981). Intracellular pH and ionic channels in the Loligo vulgaris giant axon. Biophys. J. 35, 393413.CrossRefGoogle ScholarPubMed
Catterall, W. A. (1992). Cellular and molecular biology of voltage-gated sodium channels. Physiol. Rev. 72, S15S48.CrossRefGoogle ScholarPubMed
Chua, K., Tytgat, J., Liman, E. & Hess, P. (1992). Membrane topology of RCK1 K-channels. Biophys. J. 61, A289.Google Scholar
Cole, K. S. & Moore, J. W. (1960). Potassium ion current in the squid giant axon: dynamic characteristic. Biophys. J. 1, 114.CrossRefGoogle ScholarPubMed
Conti, F., Inoue, I., Kukita, F. & Stühmer, W. (1984). Pressure dependence of sodium gating currents in the squid giant axon. Eur. Biophys. J. 11, 137147.CrossRefGoogle ScholarPubMed
Conti, F. & Stühmer, W. (1989). Quantal charge redistributions accompanying the structural transitions of sodium channels. Eur. Biophys.J. 17, 5359.CrossRefGoogle ScholarPubMed
Crouzy, S. C. & Sigworth, F. J. (1993). Fluctuations in ion channel gating currents. Analysis of nonstationary shot noise. Biophys. J. 64, 6876.CrossRefGoogle ScholarPubMed
Durell, S. R. & Guy, H. R. (1992). Atomic scale structure and functional models of voltage-gated potassium channels. Biophys. J. 62, 238247.CrossRefGoogle ScholarPubMed
Engelman, D. M., Steitz, T. A. & Goldman, A. (1986). Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Ann. Rev. Biophys. Biophys. Chem. 15, 321353.CrossRefGoogle ScholarPubMed
Gautam, M. & Tanouye, M. A. (1990). Alteration of potassium channel gating: molecular analysis of the Drosophila Sh5 mutation. Neuron 5, 6773.CrossRefGoogle ScholarPubMed
Gross, G. J., Lacro, R. V. & Logothetis, D. E. (1993). Identification of negatively charged elements of the voltage sensor in a potassium channel. Biophys. J. 64, A313.Google Scholar
Guy, H. R. & Conti, F. (1990). Pursuing the structure and function of voltage-gated channels. Trends Neurosc. 13, 201206.Google ScholarPubMed
Hahin, R. & Campbell, D. T. (1984). Altered sodium and gating current kinetics in frog skeletal muscle caused by low external pH. J. gen. Physiol. 84, 771788.Google Scholar
Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. Eur. J. Physiol. 391, 85100.CrossRefGoogle ScholarPubMed
Heginbotham, L. & MacKinnon, R. (1992). The aromatic binding site for tetraethylammonium ion on potassium channels. Neuron 8, 483491.CrossRefGoogle ScholarPubMed
Hille, B. (1992). Ionic Channels of Excitable Membranes. Sinauer.Google Scholar
Hodges, R. S., Zhou, N. E., Kay, C. M. & Semchuk, P. D. (1990). Synthetic model proteins: contribution of hydrophobic residues and disulfide bonds to protein stability. Peptide Res. 3, 123137.Google ScholarPubMed
Hodgkin, A. (1975). The optimum density of sodium channels in an unmyelinated nerve. Phil. Trans. R. Soc. Lond. B: Biol. Sci. 270 (908), 297300.Google Scholar
Hodgkin, A. L. & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. Lond. 117, 500544.CrossRefGoogle ScholarPubMed
Hoshi, T., Zagotta, W. N. & Aldrich, R. W. (1990). Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science, N. Y. 250, 533538.CrossRefGoogle ScholarPubMed
Isacoff, E. Y., Lopez, G. A., Jan, Y. N. & Jan, L. Y. (1993). A site near the transmembrane segment S6 of potassium channels interacts with barium ions. Biophys. J. 64, A226.Google Scholar
Isacoff, E. Y., Jan, Y. N. & Jan, L. Y. (1991). Putative receptor for the cytoplasmic inactivation gate in the Shaker K + channel. Nature, Lond. 353, 8690.CrossRefGoogle ScholarPubMed
Kavanaugh, M. P., Hurst, R. S., Yakel, J., Varnum, M. D., Adelman, J. P. & North, R. A. (1992). Multiple subunits of a voltage-dependent potassium channel contribute to the binding site for tetraethylammonium. Neuron 8, 493497.CrossRefGoogle Scholar
Landschulz, W. H., Johnson, P. F. & McKnight, S. L. (1989). The DNA binding domain of the rat liver nuclear protein C/EBP is bipartite. Science, N. Y. 243, 16811688.CrossRefGoogle ScholarPubMed
Li, M., Jan, Y. N. & Jan, L. Y. (1993). Molecular mechanisms of Shaker K channel subunit assembly. Biophys. J. 64, A114.Google Scholar
Liman, E. R., Hess, P., Weaver, F. & Koren, G. (1991). Voltage-sensing residues in the S4 region of a mammalian K + channel. Nature, Lond. 353, 752756.CrossRefGoogle ScholarPubMed
Logothetis, D. E., Kammen, B. F., Lindpaintner, K., BisBas, D. & Nadal-Ginard, B. (1993). Gating charge differences between two voltage-gated K+ channels are due to the specific charge content of their respective S4 regions. Neuron 10, 11211129.CrossRefGoogle Scholar
Logothetis, D. E., Movahedi, S., Satler, C., Lindpaintner, K. & Nadal-Ginard, B. (1992). Incremental reductions of positive charge within the S4 region of a voltagegated K+ channel result in corresponding decreases in gating charge. Neuron 8, 531540.CrossRefGoogle ScholarPubMed
Lopez, G. A., Jan, Y. N. & Jan, L. Y. (1991). Hydrophobic substitution mutations in the S4 sequence alter voltage-dependent gating in Shaker K+ channels. Neuron 7, 327336.CrossRefGoogle ScholarPubMed
MacKinnon, R., Heginbotham, L. & Abramson, T. (1990). Mapping the receptor site for charybdotoxin, a pore-blocking potassium channel inhibitor. Neuron 5, 767771.CrossRefGoogle ScholarPubMed
MacKinnon, R. & Miller, C. (1989). Mutant potassium channels with altered binding of charybdotoxin, a pore-blocking peptide inhibitor. Science, N.Y. 245, 13821385.CrossRefGoogle ScholarPubMed
Matteson, D. R. & Swenson, R. P. (1986). External monovalent cations that impede the closing of K channels. J. gen. Physiol. 87, 795816.CrossRefGoogle ScholarPubMed
McCormack, K., Lin, L. & Sigworth, F. J. (1993). Substitution of a hydrophobic residue alters the conformational stability of Shaker K+ channels during gating and assembly. Biophys. J. 65, 17401748.CrossRefGoogle Scholar
McCormack, K., Tanouye, M. A., Iverson, L. E., Lin, J. W., Ramaswami, M., McCormack, T., Campanelli, J. T., Mathew, M. K. & Rudy, B. (1991). A role for hydrophobic residues in the voltage-dependent gating of Shaker K+ channels. Proc. natn. Acad. Sci. U.S.A. 88, 29312935.CrossRefGoogle ScholarPubMed
Miller, C. (1991). 1990: Annus mirabilis of potassium channels. Science, N.Y. 252, 10921096.CrossRefGoogle ScholarPubMed
Mozhayeva, G. N. & Naumov, A. P. (1983). The permeability of sodium channels to hydrogen ions in nerve fibres. Pflugers Arch. Eur. J. Physiol. 396, 163173.CrossRefGoogle ScholarPubMed
Papazian, D. M., Timpe, L. C., Jan, Y. N. & Jan, L. Y. (1991). Alteration of voltagedependence of Shaker potassium channel by mutations in the S4 sequence. Nature, Lond. 349, 305310.CrossRefGoogle ScholarPubMed
Patlak, J. (1991). Molecular kinetics of voltage-dependent Na+ channels. Physiol. Rev. 71, 10471080.CrossRefGoogle ScholarPubMed
Perozo, E., MacKinnon, R., Bezanilla, F. & Stefani, E. (1993 a). Gating currents from a nonconducting mutant reveal open-closed conformations in Shaker K+ Channels. Neuron 11, 353358.CrossRefGoogle ScholarPubMed
Perozo, E., Papazian, D. M., Weiss, R. E., TOto, L., Stefani, E. & Bezanilla, F. (1993 b). Gating currents of Shaker K channel S4 mutants. Biophys. J. 64, A114.Google Scholar
Pongs, O. (1992). Molecular biology of voltage-dependent potassium channels. Physiol. Rev. 72, S69S88.CrossRefGoogle ScholarPubMed
Rashin, A. A. & Honig, B. (1984). On the environment of ionizable groups in globular proteins. J. molec. Biol. 173, 515521.CrossRefGoogle Scholar
Rayner, M. D., Starkus, J. G., Ruben, P. C. & Alicata, D. A. (1992). Voltagesensitive and solvent-sensitive processes in ion channel gating. Kinetic effects of hyperosmolar media on activation and deactivation of sodium channels. Biophys. J. 61, 96108.CrossRefGoogle ScholarPubMed
Rossie, S. & Catterall, W. A. (1989). Phosphorylation of the alpha subunit of rat brain sodium channels by cAMP-dependent protein kinase at a new site containing Ser686 and Ser687. J. biol. Chem. 264, 1422014224.CrossRefGoogle Scholar
Schauf, C. L. (1987). Selective modification of sodium channel gating by solvents and drugs. Eur. J. Pharmacol. 136, 8995.CrossRefGoogle ScholarPubMed
Schoppa, N. E., McCormack, K., Tanouye, M. A. & Sigworth, F. J. (1992). The size of gating charge in wild-type and mutant Shaker potassium channels. Science, N. Y. 255. 17121715.CrossRefGoogle ScholarPubMed
Shen, N. V., Chen, X., Boyer, M. M. & Pfaffinger, P. F. (1993). Deletion analysis of K+ Channel assembly. Neuron 11, 6776.CrossRefGoogle ScholarPubMed
Smith-Maxwell, C. J., Kanevsky, M. & Aldrich, R. W. (1993). Potassium channel activation can be slowed by mutations in the S4 and S4–S5 linker regions. Biophys.J. 64, A200.Google Scholar
Stevens, C. F. (1978). Interactions between intrinsic membrane protein and electric field. Biophys. J. 22, 295306.CrossRefGoogle ScholarPubMed
Stites, W. E., Gittis, A. G., Lattman, E. E. & Shortle, D. (1991). In a staphylococcal nuclease mutant the side-chain of a lysine replacing valine 66 is fully buried in the hydrophobic core. J. Molec. Biol. 221, 714.Google Scholar
Stühmer, W., Conti, F., Stocker, M., Pongs, O. & Heinemann, S. H. (1991). Gating currents of inactivating and non-inactivating potassium channels expressed in Xenopus oocytes. Pflugers Arch. Eur. J. Physiol. 418, 423429.CrossRefGoogle ScholarPubMed
Stühmer, W., Conti, F., Suzuki, H., Wang, X. D., Noda, M., Yahagi, N., Kubo, H. & Numa, S. (1989). Structural parts involved in activation and inactivation of the sodium channel. Nature, Lond. 339, 597603.CrossRefGoogle ScholarPubMed
Taglialatela, M., Kirsch, G. E., VanDongen, A. M., Drewe, J. A., Hartmann, H. A., Joho, R. H., Stefani, E. & Brown, A. M. (1992). Gating currents from a delayed rectifier K+ channel with altered pore structure and function. Biophys. J. 62, 3436.CrossRefGoogle ScholarPubMed
Tytgat, J. & Hess, P. (1992). Evidence for cooperative interactions in potassium channel gating. Nature, Lond. 359, 420423.CrossRefGoogle ScholarPubMed
Tytgat, J., Kakazawa, K. & Hess, P. (1993). Cooperative and non-cooperative subunit interactions determine voltage-dependent K channel gating. Biophys. J. 64, A226.Google Scholar
Vandenberg, C. A. & Bezanilla, F. (1991). A sodium channel gating model based on single channel, macroscopic ionic, and gating currents in the squid giant axon. Biophys. J. 601, 15111533.CrossRefGoogle Scholar
VanDongen, A. M., Frech, G. C., Drewe, J. A., Joho, R. H. & Brown, A. M. (1990). Alteration and restoration of K+ channel function by deletions at the N− and C− termini. Neuron 5, 433443.CrossRefGoogle ScholarPubMed
West, J. W., Numann, R., Murphy, B. J., Scheuer, T. & Catterall, W. A. (1991). A phosphorylation site in the Na+ channel required for modulation by protein kinase C. Science, N. Y. 254, 866868.CrossRefGoogle ScholarPubMed
West, J. W., Patton, D. E., Scheuer, T., Wang, Y., Goldin, A. L. & Caterall, W. A. (1992). A cluster of hydrophobic amino acid residues required for fast Na+-channel inactivation. Proc. natn. Acad. Sci. U.S.A. 89, 1091010914.CrossRefGoogle ScholarPubMed
Yellen, G., Jurman, M. E., Abramson, T. & MacKinnon, R. (1991). Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel. Science, N.Y. 251, 939942.CrossRefGoogle ScholarPubMed
Yool, A. J. & Schwarz, T. L. (1991). Alteration of ionic selectivity of a K+ channel by mutation of the H5 region. Nature, Lond. 349, 700704.CrossRefGoogle Scholar
Zagotta, W. N. & Aldrich, R. W. (1990). Alterations in activation gating of single Shaker A-type potassium channels by the Sh5 mutation. J. Neurosci. 10, 17991810.CrossRefGoogle ScholarPubMed
Zagotta, W. N., Hoshi, T. & Aldrich, R. W. (1990). Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science, N. Y. 250, 568571.CrossRefGoogle ScholarPubMed
Zagotta, W. N., Hoshi, T. & Aldrich, R. W. (1993). Shaker potassium channel gating III. Evaluation of kinetic models for activation. J. gen. physiol. (in press).Google Scholar
Zagotta, W. N., Hoshi, T., Dittman, J. & Aldrich, R. W. (1993). Shaker potassium channel gating. II. Transitions in the activation pathway. J. gen. Physiol. (in press).Google Scholar
Zimmberberg, J., Bezanilla, F. & Parsegian, V. A. (1990). Solute inaccessible aqueous volume changes during opening of the potassium channel of the squid giant axon. Biophys. J. 57, 10491064.CrossRefGoogle Scholar