Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-27T21:43:54.135Z Has data issue: false hasContentIssue false

Environmental heterogeneity of World Wildlife Fund for Nature ecoregions and implications for conservation in Neotropical biodiversity hotspots

Published online by Cambridge University Press:  24 June 2010

MARÍA CECILIA LONDOÑO-MURCIA
Affiliation:
Laboratorio de Sistemas de Información Geográfica, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-153, México
OSWALDO TELLEZ-VALDÉS
Affiliation:
Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, CP 54090, Estado de México, México
VÍCTOR SÁNCHEZ-CORDERO*
Affiliation:
Laboratorio de Sistemas de Información Geográfica, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-153, México
*
*Corresponding author: Dr Víctor Sánchez-Cordero e-mail: victor@ibiologia.unam.mx

Summary

Mesoamerica, Chocó and the tropical Andes are recognized as biodiversity hotspots where conservation action is urgently needed. Because World Wildlife Fund for Nature (WWF) ecoregions are commonly used as the basis for conservation decisions, an understanding of WWF ecoregions’ environmental heterogeneity and their representation in current protected areas (PAs) is important for identifying priority areas for conservation. Thirteen environmental domain classifications based on 22 climatic and topographical variables and the Shannon diversity index were used to quantify environmental diversity for each WWF ecoregion. The area of each environmental domain and ecoregion was compared with the World Database on Protected Areas 2007. The most environmentally-diverse ecoregions were poorly represented in the PAs and several ecoregions showed low environmental heterogeneity representation inside PAs, for example the Balsas depression, Sierra Madre del Sur and the Chiapas Sierras in Mexico, some sierras in Central America, the Middle Magdalena, inter-Andean valleys, the Eastern Cordillera of Colombia and the Western Moist Forest of Ecuador. Using WWF ecoregions as equivalent units for conservation and management can be misleading, given their environmental heterogeneity; therefore, they have limited usefulness in assessing environmental representation in PAs. An underestimation of environmental heterogeneity representation in PAs can have misleading implications for conservation actions in regions where detailed biological information is lacking. Conservation efforts should focus on the environmental domains and ecoregions showing high environmental heterogeneity that is poorly represented in PAs.

Type
Papers
Copyright
Copyright © Foundation for Environmental Conservation 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andelman, S.J. & Willig, M.R. (2003) Present patterns and future prospects for biodiversity in the Western Hemisphere. Ecology Letters 6: 818824.Google Scholar
Araújo, M.B., Densham, P. & Humphries, C. (2003) Predicting species diversity with ED: the quest for evidence. Ecography 26: 380383.Google Scholar
Armenteras, D., Gast, F. & Villareal, H. (2003) Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes, Colombia. Biological Conservation 113: 245256.Google Scholar
Arponen, A., Moilanen, A. & Ferrier, S. (2008) A successful community-level strategy for conservation prioritization. Journal of Applied Ecology 45: 14361445.Google Scholar
Bailey, R.G. (1985) The factor of scale in ecosystem mapping. Environmental Management 9: 271275.Google Scholar
Bailey, R.G. (1987) Suggested hierarchy of criteria for multi-scale ecosystem mapping. Landscape and Urban Planning 14: 313319.Google Scholar
Belbin, L. (1987) The use of non-hierarchical allocation methods for clustering large sets of data. Australia Computing Journal 19: 3241.Google Scholar
Belbin, L. (1989) PATN Technical Reference. POBox 84, Lyneham, ACT 2602, Australia.Google Scholar
Belbin, L. (1993) Environmental representativeness: regional partitioning and reserve selection. Biological Conservation 66: 223230.Google Scholar
Bonn, A. & Gaston, K.J. (2005) Capturing biodiversity: selecting priority areas for conservation using different criteria. Biodiversity and Conservation 14: 10831100.Google Scholar
Brooks, T.M., Mittermeier, R.A., Da Fonseca, G.A.B., Gerlach, J., Hoffmann, M., Lamoreux, J.F., Mittermeier, C.G., Pilgrim, J.D. & Rodrigues, A.S.L. (2006) Global biodiversity conservation priorities. Science 313: 5861.CrossRefGoogle Scholar
Bunce, R.G.H., Barr, C.J., Clarke, R.T., Howard, D.C. & Lane, A.M.J. (1996) Land classification for strategic ecological survey. Journal of Environmental Management 47: 3760.Google Scholar
CBD (2002) 2010 Biodiversity target [www document]. URL http://www.cbd.int/decision/cop/?id=7767Google Scholar
Chan, K. & Daily, G.C. (2008) The payoff of conservation investments in tropical countryside. Proceedings of the National Academy of Sciences 105: 1934219342.Google Scholar
Cue-Bar, E.M., Villaseñor, J.L., Morrone, J.J. & Ibarra-Manríquez, G. (2006) Identifying priority areas for conservation in mexican tropical deciduous forest based on tree species. Interciencia 31: 712712.Google Scholar
Dinerstein, E., Olson, D.M., Graham, D.J., Webster, A.L., Primm, S.A., Bookbinder, M.P. & Ledec, G. (1995) A conservation assessment of the terrestrial ecoregions of Latin America and the Caribbean. World Bank, Washington, DC, USA.Google Scholar
Dirzo, R. & Raven, P.H. (2003) Global state of biodiversity and loss. Annual Review of the Environment and Resources 28: 137167.Google Scholar
Ervin, J. (2003) Protected area assessments in perspective. BioScience 53: 819822.Google Scholar
ESRI (2004) ArcMAP 9. Geographic Information System [www document]. URL http://www.esri.comGoogle Scholar
Faith, D.P. (2003) Environmental diversity (ED) as surrogate information for species-level biodiversity. Ecography 26: 374379.Google Scholar
Faith, D.P. & Walker, P.A. (1996) Environmental diversity: on the best-possible use of surrogate data for assessing the relative biodiversity of sets of areas. Biodiversity and Conservation 5: 399415.Google Scholar
Faith, D.P., Ferrier, S. & Walker, P.A. (2004) The ED strategy: how species-level surrogates indicate general biodiversity patterns through an ‘environmental diversity'perspective. Journal of Biogeography 31: 12071217.Google Scholar
Ferrier, S. (2002) Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Systematic Biology 51: 331363.Google Scholar
Ferrier, S., Manion, G., Elith, J. & Richardson, K. (2007) Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions 13: 252264.Google Scholar
Ferrier, S., Powell, G.V.N., Richardson, K.S., Manion, G., Overton, J.M., Allnutt, T.F., Cameron, S.E., Mantle, K., Burgess, N.D., Faith, D.P., Lamoreux, J.F., Kier, G., Hijmans, R.J., Funk, V.A., Cassis, G.A., Fisher, B.L., Flemons, P., Lees, D., Lovett, J.C. & Van Rompaey, R. (2004) Mapping more of terrestrial biodiversity for global conservation assessment. Bioscience 54: 11011109.Google Scholar
Fuller, T., Munguía, M., Mayfield, M., Sánchez-Cordero, V. & Sarkar, S. (2006) Incorporating connectivity into conservation planning: a multi-criteria case study from central Mexico. Biological Conservation 133: 131142.Google Scholar
Henderson, P.A. & Seaby, R.M. (2002) Species Diversity and Richness. Lymington, UK: Pisces Conservation Ltd.Google Scholar
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 19651978.Google Scholar
Kim, K. & Byrne, L. (2006) Biodiversity loss and the taxonomic bottleneck: emerging biodiversity science. Ecological Research 21: 794810.Google Scholar
Kirkpatrick, J.B. & Brown, M.J. (1994) A comparison of direct and environmental domain approaches to planning reservation of forest higher plant communities and species in Tasmania. Conservation Biology 217–224.Google Scholar
Klijn, F. & Haes, H.A.U. (1994) A hierarchical approach to ecosystems and its implications for ecological land classification. Landscape Ecology 9: 89104.Google Scholar
Leathwick, J.R., Overton, J.M.C. & Mc Leod, M. (2003) An environmental domain classification of New Zealand and its use as a tool for biodiversity management. Conservation Biology 17: 16121623.Google Scholar
Loyola, R.D., Kubota, U. & Lewinsohn, T.M. (2007) Endemic vertebrates are the most effective surrogates for identifying conservation priorities among Brazilian ecoregions. Diversity and Distributions 13: 389396.Google Scholar
Lugo, A.E., Brown, S.L., Dodson, R., Smith, T.S. & Shugart, H.H. (1999) Special paper: the Holdridge life zones of the conterminous United States in relation to ecosystem mapping. Journal of Biogeography 26: 10251038.Google Scholar
Mackey, B.G., Berry, S.L. & Brown, T. (2008) Reconciling approaches to biogeographical regionalization: a systematic and generic framework examined with a case study of the Australian continent. Journal of Biogeography 35: 213229.Google Scholar
Mackey, B.G., Nix, H.A., Hutchinson, M.F., Macmahon, J.P. & Fleming, P.M. (1988) Assessing representativeness of places for conservation reservation and heritage listing. Environmental Management 12: 501514.Google Scholar
Margules, C.R. & Pressey, R.L. (2000) Systematic conservation planning. Nature 405: 243253.Google Scholar
Margules, C.R. & Sarkar, S. (2007) Systematic Conservation Planning. Cambridge, UK: Cambridge University Press.Google Scholar
McDonald, R., McKnight, M., Weiss, D., Selig, E., O'Connor, M., Violin, C. & Moody, A. (2005) Species compositional similarity and ecoregions: do ecoregion boundaries represent zones of high species turnover? Biological Conservation 126: 2440.Google Scholar
Metzger, M.J., Bunce, R.G.H., Jongman, R.H.G., Mucher, C.A. & Watkins, J.W. (2005) A climatic stratification of the environment of Europe. Global Ecology and Biogeography 14: 549563.Google Scholar
Morin, X. & Lechowicz, M.J. (2008) Contemporary perspectives on the niche that can improve models of species range shifts under climate change. Biology Letters 4: 573573.Google Scholar
Morrone, J.J. (2005) Hacia una síntesis biogeográfica de México. Revista Mexicana de Biodiversidad 76: 207252.Google Scholar
Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853858.Google Scholar
Nix, H.A., Faith, D.P., Hutchinson, M.F., Margules, C.R., West, J., Allison, A., Kesteven, J.L., Natera, G., Slater, W., Stein, J.L. & Walker, P. (2000) The BioRap toolbox: a national study of biodiversity assessment and planning for Papua New Guinea. Consultancy Report to the World Bank, Centre for Resource & Environmental Studies (CRES), Australian National University (ANU).Google Scholar
Oliver, I., Holmes, A., Dangerfield, J.M., Gillings, M., Pik, A.J., Britton, D.R., Holley, M., Montgomery, M.E., Raison, M. & Logan, V. (2004) Land systems as surrogates for biodiversity in conservation planning. Ecological Applications 14: 485503.Google Scholar
Olson, D.M. & Dinerstein, E. (2002) The Global 200: priority ecoregions for global conservation. Annals of the Missouri Botanical Garden 89: 199224.Google Scholar
Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., D'Amico, J.A., Itoua, I., Strand, H.E. & Morrison, J.C. (2001) Terrestrial ecoregions of the world: a new map of life on earth. BioScience 51: 933938.Google Scholar
Pielou, E.C. (1977) Mathematical Ecology. New York, NY, USA: John Wiley and Sons.Google Scholar
Pressey, R.L., Hager, T.C., Ryan, K.M., Schwarz, J., Wall, S., Ferrier, S. & Creaser, P.M. (2000) Using abiotic data for conservation assessments over extensive regions: quantitative methods applied across New South Wales, Australia. Biological Conservation 96: 5582.CrossRefGoogle Scholar
Rodrigues, A.S.L., Andelman, S.J., Bakarr, M.I., Boitani, L., Brooks, T.M., Cowling, R.M., Fishpool, L.D.C., da Fonseca, G.A.B., Gaston, K.J. & Hoffmann, M. (2004) Effectiveness of the global protected area network in representing species diversity. Nature 428: 640643.Google Scholar
Rosenzweig, M.L. (1995) Species Diversity in Space and Time. Cambridge, UK: Cambridge University Press.Google Scholar
Sarkar, S., Justus, J., Fuller, T., Kelley, C., Garson, J. & Mayfield, M. (2005) Effectiveness of environmental surrogates for the selection of conservation area networks. Conservation Biology 19: 815825.Google Scholar
Sarkar, S., Sánchez-Cordero, V., Londoño, M.C. & Fuller, T. (2009) Systematic conservation assessment for the Mesoamerica, Chocó, and Tropical Andes biodiversity hotspots: a preliminary analysis. Biodiversity and Conservation 18: 17931828.Google Scholar
Sneath, P.H.A. & Sokal, R.R. (1973) Numerical Taxonomy. San Francisco, CA, USA: Springer.Google Scholar
Soutullo, A., De Castro, M. & Urios, V. (2008) Linking political and scientifically derived targets for global biodiversity conservation: implications for the expansion of the global network of protected areas. Diversity and Distributions 14: 604613.Google Scholar
StatSoft (2007) STATITICA (data analysis software system), version 8.0. www.statsoft.comGoogle Scholar
Thompson, R.S., Shafer, S.L., Anderson, K.H., Strickland, L.E., Pelltier, R.T., Bartlein, P.J. & Kerwin, M.W. (2004) Topographic, bioclimatic, and vegetation characteristics of three ecoregion classification systems in North America: comparisons along continent-wide transects. Environmental Management 34: 125148.Google Scholar
Trakhtenbrot, A. & Kadmon, R. (2005) Environmental cluster analysis as a tool for selecting complementary networks of conservation sites. Ecological Applications 15: 335345.Google Scholar
Trakhtenbrot, A. & Kadmon, R. (2006) Effectiveness of environmental cluster analysis in representing regional species diversity. Conservation Biology 20: 10871098.Google Scholar
USGS (1998) GTOPO30 Global 30 arc-second digital elevation model [www document]. URL http://www1.gsi.go.jp/geowww/globalmap-gsi/gtopo30/gtopo30.htmlGoogle Scholar
Veech, J.A. & Crist, T.O. (2007) Habitat and climate heterogeneity maintain beta-diversity of birds among landscapes within ecoregions. Global Ecology and Biogeography 16: 650656.Google Scholar
Wikramanayake, E., Dinerstein, E., Loucks, C., Olson, D., Morrison, J., Lamoreux, J., McKnight, M. & Hedao, P. (2002) Ecoregions in ascendance: reply to Jepson and Whittaker. Conservation Biology 16: 238243.Google Scholar
WDPA (2007) The World Database on Protected Areas, Version 2007 [www document]. URL http://www.wdpa.org/Google Scholar
World Bank (2007) World Development Indicators 2007. Washington, DC, USA: The World Bank.Google Scholar
Yarrow, M.M. & Salthe, S.N. (2008) Ecological boundaries in the context of hierarchy theory. BioSystems 92: 233244.Google Scholar
Supplementary material: File

Murcia supplementary material

Appendices.doc

Download Murcia supplementary material(File)
File 551.4 KB