Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T16:18:32.778Z Has data issue: false hasContentIssue false

Range perception through apparent image speed in freely flying honeybees

Published online by Cambridge University Press:  02 June 2009

M. V. Srinivasan
Affiliation:
Centre for Visual Sciences, Research School of Biological Sciences, Australian National University, Canberra, Australia
M. Lehrer
Affiliation:
Abtl. Neurobiologie, Zoologisches Institut der Universitaet Zuerich, Winterthurerstrasse - 190, CH-8057 Zurich, Switzerland
W. H. Kirchner
Affiliation:
Zoologisches Institut der Universitaet, Lehrstuhl fuer Tierphysiologie, D-8700 Wuerzburg, Germany
S. W. Zhang
Affiliation:
lnstitute of Biophysics, Academia Sinica, Beijing, Peoples Republic of China

Abstract

When negotiating a narrow gap, honeybees tend to fly through the middle of the gap, balancing the distances to the boundary on either side. To investigate the basis of this “centering response,” bees were trained to fly through a tunnel on their way to a feeding site and back, while their flight trajectories were filmed from above. The wall on either side carried a visual pattern. When the patterns were stationary vertical gratings, bees tended to fly through the middle of the tunnel, i.e. along its longitudinal axis. However, when one of the gratings was in motion, bees flying in the same direction as the moving grating tended to fly closer to while bees flying in the opposite direction tended to fly closer to the stationary grating. This demonstrates, directly and unequivocally, that flying bees estimate the distances of surfaces in terms of the apparent motion of their images. A series of further experiments revealed that the distance to the gratings is gauged in terms of their apparent angular speeds, and that the visual system of the bee is capable of measuring angular speed largely independently of the spatial period, intensity profile, or contrast of the grating. Thus, the motion-sensitive mechanisms mediating range perception appear to be qualitatively different from those that mediate the well-known optomotor response in insects, or those involved in motion detection and ocular tracking in man.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borst, A. & Egelhaaf, M. (1989). Principles of visual motion detection. Trends in Neurosciences 12, 297306.CrossRefGoogle ScholarPubMed
Buchner, E. (1984). Behavioral analysis of spatial vision in insects. In Photoreception and Vision in Invertebrates, ed. Ali, M.A., pp. 561621. New York: Plenum Press.CrossRefGoogle Scholar
Burr, D.C. & Ross, J. (1982). Contrast sensitivity at high velocities. Vision Research 22, 479484.CrossRefGoogle ScholarPubMed
Cheng, K., Collett, T.S., Pickhard, A. & Wehner, R. (1987). The use of visual landmarks by honeybees: bees weight landmarks according to their distance from the goal. Journal of Comparative Physiology A 161, 469475.CrossRefGoogle Scholar
Collett, T.S. (1978). Peering-a locust behavior pattern for obtaining motion parallax information. Journal of Experimental Biology 76, 237241.CrossRefGoogle Scholar
Collett, T.S. (1988). How ladybirds approach nearby stalks: a study of visual selectivity and attention. Journal of Comparative PhysiologyA 163, 355363.CrossRefGoogle Scholar
Collett, T.S. & Harkness, L.I.K. (1982). Depth vision in animals. In Analysis of Visual Behavior, ed. Ingle, D.J., Goodale, M.A. & Mansfield, R.J.W., pp. 111176. Cambridge, Massachusetts: M.I.T. Press.Google Scholar
Collett, T. & King, A.J. (1975). Vision during flight. In The Compound Eye and Vision in Insects, ed. Horridge, G.A., pp. 437466. Oxford: Clarendon Press.Google Scholar
Coombe, P.E., Srinivasan, M.V. & Guy, R.G. (1989). Are the large monopolar cells of the insect lamina on the optomotor pathway? Journal of Comparative Physiology A 166, 2335.CrossRefGoogle Scholar
David, C.T. (1982). Compensation for height in the control of ground- speed by Drosophila in a new, “Barber's Pole” wind tunnel. Journal of Comparative Physiology 147, 485493.CrossRefGoogle Scholar
Eckert, H. (1980). Functional properties of the HI -neurone in the third optic ganglion of the blowfly (Phaenicia). Journal of Comparative Physiology 135, 2939.CrossRefGoogle Scholar
Eriksson, E.S. (1980). Movement parallax and distance perception in the grasshopper Phaulacridium vittatum (Sjostedt). Journal of Experimental Biology 86, 337340.CrossRefGoogle Scholar
Fei, Jin Z. & Srinivasan, M.V. (1990). Neural gradient models for the measurement of image velocity. Visual Neuroscience 5, 261271.Google Scholar
Gellman, R.S., Carl, J.R. & Miles, F.A. (1990). Short latency ocular following responses in man. Visual Neuroscience 5, 107122.CrossRefGoogle ScholarPubMed
Goulet, M., Campan, R. & Lambin, M. (1981). The visual perception of relative distances in the wood-cricket (Nemobius sylvestris). Physiological Entomology 6, 357367.CrossRefGoogle Scholar
Hausen, K. & Egelhaaf, M. (1989). Neural mechanisms of visual course control in insects. In Facets of Vision, ed. Stavenga, D.G. & Hardie, R.C., pp. 391424. Berlin, Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Horn, B.K.P. & Schunck, B. (1981). Determining optical flow. Artificial Intelligence 17, 185203.CrossRefGoogle Scholar
Horridge, G.A. (1986). A theory of insect vision: velocity parallax. Proceedings of the Royal Society B (London) 229, 1327.Google Scholar
Horridge, G.A. & Marcelja, L. (1990). Responses of the HI neuron of the fly to contrast and moving bars. Philosophical Transactions of the Royal Society B (London) 329, 7580.Google Scholar
Ibbotson, M.R. & Goodman, L.J. (1990). Response characteristics of four wide-field motion-sensitive descending interneurones in Apis mellifera. Journal of Experimental Biology 148, 255279.CrossRefGoogle Scholar
Kelly, D.H. (1979). Motion and vision, II: Stabilized spatio-temporal threshold surface. Journal of the Optical Society of A merica 69, 13401349.CrossRefGoogle ScholarPubMed
Kirchner, W. & Srinivasan, M.V. (1989). Freely flying honeybees use image motion to estimate object distance. Naturwissenschaften 76, 281282.CrossRefGoogle Scholar
Kunze, P. (1961). Untersuchung des Bewegungssehens fixiert fliegenden Bienen. Zeitschrift für vergleichende Physiologie 44, 656684.CrossRefGoogle Scholar
Land, M.F. & Collett, T.S. (1974). Chasing behavior of houseflies (Fannia canicularis). Journal of Comparative Physiology 89, 331357.CrossRefGoogle Scholar
Lehrer, M. (1990). How bees use peripheral eye regions to localize a frontally positioned target. Journal of Comparative Physiology 167, 173185.Google Scholar
Lehrer, M., Srinivasan, M.V., Zhang, S.W. & Horridge, G.A. (1988). Motion cues provide the bee's visual world with a third dimension. Nature (London) 332, 356357.CrossRefGoogle Scholar
Marr, D. & Ullman, S. (1981). Directional selectivity and its use in early visual processing. Proceedings of the Royal Society B (London) 211, 151180.Google ScholarPubMed
Olberg, R.M. (1981). Object and self-movement detectors in the ventral nerve cord of the dragonfly. Journal of Comparative Physiology 141, 327334.CrossRefGoogle Scholar
Reichardt, W. (1987). Evaluation of optical motion information by motion detectors. Journal of Comparative Physiology 161, 533547.CrossRefGoogle Scholar
Sobel, E.C. (1990 a). Depth perception by motion parallax and paradoxical parallax in the locust. Naturwissenschaften 77, 241243.CrossRefGoogle ScholarPubMed
Sobel, E.C. (1990 b). The locust's use of motion parallax to measure distance. Journal of Comparative Physiology 167, 579588.Google ScholarPubMed
Srinivasan, M.V. (1990). Generalized gradient schemes for the measurement of two-dimensional image motion. Biological Cybernetics 63, 421431.CrossRefGoogle ScholarPubMed
Srinivasan, M.V. & Lehrer, M. (1984 a). Temporal acuity of honeybee vision: behavioral studies using moving stimuli. Journal of Comparative Physiology A 155, 297312.CrossRefGoogle Scholar
Srinivasan, M.V. & Lehrer, M. (1984 b). Temporal acuity of honeybee vision: behavioral studies using flickering stimuli. Physiological Entomology 9, 447457.CrossRefGoogle Scholar
Srinivasan, M.V. & Lehrer, M. (1985). Temporal resolution of color vision in the honeybee. Journal of Comparative Physiology 157, 579586.CrossRefGoogle ScholarPubMed
Srinivasan, M.V. & Lehrer, M. (1988). Spatial acuity of honeybee vision and its spectral properties. Journal of Comparative Physiology A 162, 159172.CrossRefGoogle Scholar
Srinivasan, M.V. & Lehrer, M., Zhang, S.W. & Horridge, G.A. (1989). How honeybees measure their distance from objects of unknown size. Journal of Comparative Physiology A 165, 605613.CrossRefGoogle Scholar
Srinivasan, M.V., Pinter, R.B. & Osorio, D. (1990). Matched filtering in the visual system of the fly: large monopolar cells of the lamma are optimized to detect moving edges and blobs. Proceedings of the Royal Society B (London) 240, 279293.Google Scholar
Von, Buddenbrock W. & Moller-Racke, L. (1952). Beitrag zum Lichtsinn der Fliege Eristalomyia tenax, Zoologischer Anzeiger 149, 5161.Google Scholar
Wallace, G.K. (1959). Visual scanning in the desert locust (Schistocerca gregaria Forskal). Journal of Experimental Biology 36, 512525.CrossRefGoogle Scholar