Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-17T02:19:44.572Z Has data issue: false hasContentIssue false

Recent advances in understanding the molecular basis of group B Streptococcus virulence

Published online by Cambridge University Press:  22 September 2008

Heather C. Maisey
Affiliation:
Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
Kelly S. Doran
Affiliation:
Department of Biology, San Diego State University, San Diego, CA, USA.
Victor Nizet*
Affiliation:
Department of Pediatrics, University of California San Diego, La Jolla, CA, USA. Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
*
*Corresponding author: Victor Nizet, Professor of Pediatrics and Pharmacy, University of California, San Diego School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, La Jolla, CA 92093-0687, USA. Tel:  + 1 858 534 7408; Fax:  + 1 858 534 5611; E-mail: vnizet@ucsd.edu

Abstract

Group B Streptococcus commonly colonises healthy adults without symptoms, yet under certain circumstances displays the ability to invade host tissues, evade immune detection and cause serious invasive disease. Consequently, Group B Streptococcus remains a leading cause of neonatal pneumonia, sepsis and meningitis. Here we review recent information on the bacterial factors and mechanisms that direct host–pathogen interactions involved in the pathogenesis of Group B Streptococcus infection. New research on host signalling and inflammatory responses to Group B Streptococcus infection is summarised. An understanding of the complex interplay between Group B Streptococcus and host provides valuable insight into pathogen evolution and highlights molecular targets for therapeutic intervention.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1Johri, A.K. et al. (2006) Group B Streptococcus: global incidence and vaccine development. Nat Rev Microbiol 4, 932-942CrossRefGoogle ScholarPubMed
2Edwards, M.S. and Baker, C.J. (2005) Group B streptococcal infections in elderly adults. Clin Infect Dis 41, 839-847Google ScholarPubMed
3Campbell, J.R. et al. (2000) Group B streptococcal colonization and serotype-specific immunity in pregnant women at delivery. Obstet Gynecol 96, 498-503Google Scholar
4Beckmann, C. et al. (2002) Identification of novel adhesins from Group B streptococci by use of phage display reveals that C5a peptidase mediates fibronectin binding. Infect Immun 70, 2869-2876CrossRefGoogle Scholar
5Cheng, Q. et al. (2002) The group B streptococcal C5a peptidase is both a specific protease and an invasin. Infect Immun 70, 2408-2413CrossRefGoogle Scholar
6Brown, C.K. et al. (2005) Structure of the streptococcal cell wall C5a peptidase. Proc Natl Acad Sci U S A 102, 18391-18396CrossRefGoogle ScholarPubMed
7Cleary, P.P. et al. (2004) Immunization with C5a peptidase from either group A or B streptococci enhances clearance of group A streptococci from intranasally infected mice. Vaccine 22, 4332-4341Google Scholar
8Tamura, G.S. et al. (2006) High-affinity interaction between fibronectin and the group B streptococcal C5a peptidase is unaffected by a naturally occurring four-amino-acid deletion that eliminates peptidase activity. Infect Immun 74, 5739-5746CrossRefGoogle Scholar
9Spellerberg, B. et al. (1999) Lmb, a protein with similarities to the LraI adhesin family, mediates attachment of Streptococcus agalactiae to human laminin. Infect Immun 67, 871-878CrossRefGoogle Scholar
10Schubert, A. et al. (2004) The fibrinogen receptor FbsA promotes adherence of Streptococcus agalactiae to human epithelial cells. Infect Immun 72, 6197-6205CrossRefGoogle ScholarPubMed
11Samen, U. et al. (2007) The surface protein Srr-1 of Streptococcus agalactiae binds human keratin 4 and promotes adherence to epithelial HEp-2 cells. Infect Immun 75, 5405-5414CrossRefGoogle ScholarPubMed
12Seepersaud, R. et al. (2005) Characterization of a novel leucine-rich repeat protein antigen from group B streptococci that elicits protective immunity. Infect Immun 73, 1671-1683CrossRefGoogle Scholar
13Lauer, P. et al. (2005) Genome analysis reveals pili in Group B Streptococcus. Science 309, 105Google ScholarPubMed
14Sauer, F.G. et al. (2000) Bacterial pili: molecular mechanisms of pathogenesis. Curr Opin Microbiol 3, 65-72CrossRefGoogle ScholarPubMed
15Rosini, R. et al. (2006) Identification of novel genomic islands coding for antigenic pilus-like structures in Streptococcus agalactiae. Mol Microbiol 61, 126-141CrossRefGoogle ScholarPubMed
16Dramsi, S. et al. (2006) Assembly and role of pili in group B streptococci. Mol Microbiol 60, 1401-1413Google Scholar
17Maisey, H.C. et al. (2007) Group B streptococcal pilus proteins contribute to adherence to and invasion of brain microvascular endothelial cells. J Bacteriol 189, 1464-1467CrossRefGoogle Scholar
18Krishnan, V. et al. (2007) An IgG-like domain in the minor pilin GBS52 of Streptococcus agalactiae mediates lung epithelial cell adhesion. Structure 15, 893-903Google Scholar
19Galask, R.P. et al. (1984) Bacterial attachment to the chorioamniotic membranes. Am J Obstet Gynecol 148, 915-928CrossRefGoogle Scholar
20Winram, S.B. et al. (1998) Characterization of group B streptococcal invasion of human chorion and amnion epithelial cells In vitro. Infect Immun 66, 4932-4941Google Scholar
21Lin, B. et al. (1994) Cloning and expression of the gene for group B streptococcal hyaluronate lyase. J Biol Chem 269, 30113-30116CrossRefGoogle ScholarPubMed
22Rubens, C.E. et al. (1991) Pathophysiology and histopathology of group B streptococcal sepsis in Macaca nemestrina primates induced after intraamniotic inoculation: evidence for bacterial cellular invasion. J Infect Dis 164, 320-330CrossRefGoogle Scholar
23Rubens, C.E. et al. (1992) Respiratory epithelial cell invasion by group B streptococci. Infect Immun 60, 5157-5163CrossRefGoogle ScholarPubMed
24Gibson, R.L. et al. (1993) Group B streptococci invade endothelial cells: type III capsular polysaccharide attenuates invasion. Infect Immun 61, 478-485CrossRefGoogle Scholar
25Valentin-Weigand, P. et al. (1997) Characterization of group B streptococcal invasion in HEp-2 epithelial cells. FEMS Microbiol Lett 147, 69-74CrossRefGoogle Scholar
26Nizet, V. et al. (1997) Invasion of brain microvascular endothelial cells by group B streptococci. Infect Immun 65, 5074-5081CrossRefGoogle ScholarPubMed
27Tenenbaum, T. et al. (2007) Streptococcus agalactiae invasion of human brain microvascular endothelial cells is promoted by the laminin-binding protein Lmb. Microbes Infect 9, 714-720CrossRefGoogle ScholarPubMed
28Adderson, E.E. et al. (2003) Subtractive hybridization identifies a novel predicted protein mediating epithelial cell invasion by virulent serotype III group B Streptococcus agalactiae. Infect Immun 71, 6857-6863CrossRefGoogle ScholarPubMed
29Bolduc, G.R. et al. (2002) The alpha C protein mediates internalization of group B Streptococcus within human cervical epithelial cells. Cell Microbiol 4, 751-758CrossRefGoogle Scholar
30Li, J. et al. (1997) Inactivation of the alpha C protein antigen gene, bca, by a novel shuttle/suicide vector results in attenuation of virulence and immunity in group B Streptococcus. Proc Natl Acad Sci U S A 94, 13251-13256CrossRefGoogle Scholar
31Baron, M.J. et al. (2004) Alpha C protein of group B Streptococcus binds host cell surface glycosaminoglycan and enters cells by an actin-dependent mechanism. J Biol Chem 279, 24714-24723CrossRefGoogle Scholar
32Baron, M.J. et al. (2007) Identification of a glycosaminoglycan binding region of the alpha C protein that mediates entry of group B streptococci into host cells. J Biol Chem 282, 10526-10536CrossRefGoogle Scholar
33Bolduc, G.R. and Madoff, L.C. (2007) The group B streptococcal alpha C protein binds alpha1beta1-integrin through a novel KTD motif that promotes internalization of GBS within human epithelial cells. Microbiology 153, 4039-4049Google Scholar
34Dumenil, G. and Nassif, X. (2005) Extracellular bacterial pathogens and small GTPases of the Rho family: an unexpected combination. Curr Top Microbiol Immunol 291, 11-28Google Scholar
35Burnham, C.A., Shokoples, S.E. and Tyrrell, G.J. (2007) Rac1, RhoA, and Cdc42 participate in HeLa cell invasion by group B streptococcus. FEMS Microbiol Lett 272, 8-14Google Scholar
36Wang, Q.Q. et al. (2008) Integrin beta 1 regulates phagosome maturation in macrophages through Rac expression. J Immunol 180, 2419-2428Google Scholar
37Burnham, C.A., Shokoples, S.E. and Tyrrell, G.J. (2007) Invasion of HeLa cells by group B streptococcus requires the phosphoinositide-3-kinase signalling pathway and modulates phosphorylation of host-cell Akt and glycogen synthase kinase-3. Microbiology 153, 4240-4252CrossRefGoogle ScholarPubMed
38Nizet, V. et al. (1996) Group B streptococcal β-hemolysin expression is associated with injury of lung epithelial cells. Infect Immun 64, 3818-3826CrossRefGoogle Scholar
39Gibson, R.L., Nizet, V. and Rubens, C.E. (1999) Group B streptococcal β-hemolysin promotes injury of lung microvascular endothelial cells. Pediatr Res 45, 626-634CrossRefGoogle Scholar
40Doran, K.S. et al. (2002) Group B streptococcal β-hemolysin/cytolysin promotes invasion of human lung epithelial cells and the release of interleukin-8. J Infect Dis 185, 196-203CrossRefGoogle Scholar
41Hensler, M.E. et al. (2005) Virulence role of group B Streptococcus β-hemolysin/cytolysin in a neonatal rabbit model of early-onset pulmonary infection. J Infect Dis 191, 1287-1291CrossRefGoogle Scholar
42Terao, Y. et al. (2006) Multifunctional glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pyogenes is essential for evasion from neutrophils. J Biol Chem 281, 14215-14223Google Scholar
43Cole, J.N. et al. (2006) Trigger for group A streptococcal M1T1 invasive disease. FASEB J 20, 1745-1747Google Scholar
44Seifert, K.N. et al. (2003) Characterization of group B streptococcal glyceraldehyde-3-phosphate dehydrogenase: surface localization, enzymatic activity, and protein-protein interactions. Can J Microbiol 49, 350-356CrossRefGoogle Scholar
45Magalhaes, V. et al. (2007) Interaction with human plasminogen system turns on proteolytic activity in Streptococcus agalactiae and enhances its virulence in a mouse model. Microbes Infect 9, 1276-1284CrossRefGoogle ScholarPubMed
46Soriani, M. et al. (2006) Group B Streptococcus crosses human epithelial cells by a paracellular route. J Infect Dis 193, 241-250CrossRefGoogle ScholarPubMed
47Maruvada, R., Blom, A.M. and Prasadarao, N.V. (2008) Effects of complement regulators bound to Escherichia coli K1 and Group B Streptococcus on the interaction with host cells. Immunology 124, 265-276CrossRefGoogle ScholarPubMed
48Jennings, H.J. et al. (1983) Structure of native polysaccharide antigens of type Ia and type Ib group B Streptococcus. Biochemistry 22, 1258-1264CrossRefGoogle ScholarPubMed
49Wessels, M.R. et al. (1989) Isolation and characterization of type IV group B Streptococcus capsular polysaccharide. Infect Immun 57, 1089-1094CrossRefGoogle ScholarPubMed
50Wessels, M.R. et al. (1987) Structure and immunochemistry of an oligosaccharide repeating unit of the capsular polysaccharide of type III group B Streptococcus. A revised structure for the type III group B streptococcal polysaccharide antigen. J Biol Chem 262, 8262-8267Google ScholarPubMed
51Jennings, H.J. et al. (1983) Structural determination of the capsular polysaccharide antigen of type II group B Streptococcus. J Biol Chem 258, 1793-1798CrossRefGoogle ScholarPubMed
52Kogan, G. et al. (1995) Structural elucidation of the novel type VII group B Streptococcus capsular polysaccharide by high resolution NMR spectroscopy. Carbohydr Res 277, 1-9CrossRefGoogle ScholarPubMed
53Kogan, G. et al. (1996) Structural and immunochemical characterization of the type VIII group B Streptococcus capsular polysaccharide. J Biol Chem 271, 8786-8790CrossRefGoogle ScholarPubMed
54Slotved, H.C. et al. (2007) Serotype IX, a proposed new Streptococcus agalactiae serotype. J Clin Microbiol 45, 2929-2936Google Scholar
55Campbell, J.R., Baker, C.J. and Edwards, M.S. (1991) Deposition and degradation of C3 on type III group B streptococci. Infect Immun 59, 1978-1983Google Scholar
56Marques, M.B. et al. (1992) Prevention of C3 deposition by capsular polysaccharide is a virulence mechanism of type III group B streptococci. Infect Immun 60, 3986-3993CrossRefGoogle ScholarPubMed
57Segura, M.A., Cleroux, P. and Gottschalk, M. (1998) Streptococcus suis and group B Streptococcus differ in their interactions with murine macrophages. FEMS Immunol Med Microbiol 21, 189-195Google Scholar
58Takahashi, S. et al. (1999) Capsular sialic acid limits C5a production on type III group B streptococci. Infect Immun 67, 1866-1870CrossRefGoogle ScholarPubMed
59Santi, I. et al. (2007) BibA: a novel immunogenic bacterial adhesin contributing to group B Streptococcus survival in human blood. Mol Microbiol 63, 754-767Google Scholar
60Jarva, H. et al. (2004) The group B streptococcal beta and pneumococcal Hic proteins are structurally related immune evasion molecules that bind the complement inhibitor factor H in an analogous fashion. J Immunol 172, 3111-3118Google Scholar
61Jerlstrom, P.G., Chhatwal, G.S. and Timmis, K.N. (1991) The IgA-binding beta antigen of the c protein complex of Group B streptococci: sequence determination of its gene and detection of two binding regions. Mol Microbiol 5, 843-849Google Scholar
62Harris, T.O. et al. (2003) A novel streptococcal surface protease promotes virulence, resistance to opsonophagocytosis, and cleavage of human fibrinogen. J Clin Invest 111, 61-70CrossRefGoogle ScholarPubMed
63Cornacchione, P. et al. (1998) Group B streptococci persist inside macrophages. Immunology 93, 86-95Google Scholar
64Teixeira, C.F. et al. (2001) Cytochemical study of Streptococcus agalactiae and macrophage interaction. Microsc Res Tech 54, 254-259CrossRefGoogle ScholarPubMed
65Wilson, C.B. and Weaver, W.M. (1985) Comparative susceptibility of group B streptococci and Staphylococcus aureus to killing by oxygen metabolites. J Infect Dis 152, 323-329Google Scholar
66Poyart, C. et al. (2001) Contribution of Mn-cofactored superoxide dismutase (SodA) to the virulence of Streptococcus agalactiae. Infect Immun 69, 5098-5106Google Scholar
67Spellerberg, B. et al. (2000) The cyl genes of Streptococcus agalactiae are involved in the production of pigment. FEMS Microbiol Lett 188, 125-128Google Scholar
68Liu, G.Y. et al. (2004) Sword and shield: linked group B streptococcal β-hemolysin/cytolysin and carotenoid pigment function to subvert host phagocyte defense. Proc Natl Acad Sci U S A 101, 14491-14496CrossRefGoogle Scholar
69Gallo, R.L. and Nizet, V. (2003) Endogenous production of antimicrobial peptides in innate immunity and human disease. Curr Allergy Asthma Rep 3, 402-409Google Scholar
70Poyart, C. et al. (2001) Regulation of D-alanyl-lipoteichoic acid biosynthesis in Streptococcus agalactiae involves a novel two-component regulatory system. J Bacteriol 183, 6324-6334Google Scholar
71Hamilton, A. et al. (2006) Penicillin-binding protein 1a promotes resistance of group B streptococcus to antimicrobial peptides. Infect Immun 74, 6179-6187Google Scholar
72Jones, A.L. et al. (2007) A streptococcal penicillin-binding protein is critical for resisting innate airway defenses in the neonatal lung. J Immunol 179, 3196-3202CrossRefGoogle ScholarPubMed
73Maisey, H.C. et al. (2008) A group B streptococcal pilus protein promotes phagocyte resistance and systemic virulence. FASEB J 22, 1715-1724CrossRefGoogle Scholar
74Ulett, G.C. et al. (2005) Mechanisms of group B streptococcal-induced apoptosis of murine macrophages. J Immunol 175, 2555-2562Google Scholar
75Fettucciari, K. et al. (2006) Group B Streptococcus induces macrophage apoptosis by calpain activation. J Immunol 176, 7542-7556CrossRefGoogle ScholarPubMed
76Ulett, G.C. et al. (2003) Beta-hemolysin-independent induction of apoptosis of macrophages infected with serotype III group B streptococcus. J Infect Dis 188, 1049-1053Google Scholar
77Carlin, A.F. et al. (2007) Group B streptococcal capsular sialic acids interact with siglecs (immunoglobulin-like lectins) on human leukocytes. J Bacteriol 189, 1231-1237CrossRefGoogle Scholar
78Rojas, J. et al. (1983) Pulmonary hemodynamic and ultrastructural changes associated with Group B streptococcal toxemia in adult sheep and newborn lambs. Pediatr Res 17, 1002-1008Google Scholar
79Vallette, J.D. Jr. et al. (1995) Effect of an interleukin-1 receptor antagonist on the hemodynamic manifestations of group B streptococcal sepsis. Pediatr Res 38, 704-708CrossRefGoogle ScholarPubMed
80Mancuso, G. et al. (1997) Role of interleukin 12 in experimental neonatal sepsis caused by group B streptococci. Infect Immun 65, 3731-3735CrossRefGoogle ScholarPubMed
81Vallejo, J.G., Baker, C.J. and Edwards, M.S. (1996) Roles of the bacterial cell wall and capsule in induction of tumor necrosis factor alpha by type III group B streptococci. Infect Immun 64, 5042-5046Google Scholar
82Vallejo, J.G., Baker, C.J. and Edwards, M.S. (1996) Interleukin-6 production by human neonatal monocytes stimulated by type III group B streptococci. J Infect Dis 174, 332-337Google Scholar
83Mancuso, G. et al. (2004) Dual role of TLR2 and myeloid differentiation factor 88 in a mouse model of invasive group B streptococcal disease. J Immunol 172, 6324-6329CrossRefGoogle Scholar
84Henneke, P. et al. (2008) Lipoproteins are critical TLR2 activating toxins in group B streptococcal sepsis. J Immunol 180, 6149-6158Google Scholar
85Henneke, P. et al. (2005) Role of lipoteichoic acid in the phagocyte response to group B streptococcus. J Immunol 174, 6449-6455Google Scholar
86Kenzel, S. et al. (2006) c-Jun kinase is a critical signaling molecule in a neonatal model of group B streptococcal sepsis. J Immunol 176, 3181-3188CrossRefGoogle Scholar
87Raykova, V.D. et al. (2003) Nitric oxide-dependent regulation of pro-inflammatory cytokines in group B streptococcal inflammation of rat lung. Ann Clin Lab Sci 33, 62-67Google Scholar
88Ring, A. et al. (2002) Synergistic action of nitric oxide release from murine macrophages caused by group B streptococcal cell wall and beta-hemolysin/cytolysin. J Infect Dis 186, 1518-1521Google Scholar
89Maloney, C.G. et al. (2000) Induction of cyclooxygenase-2 by human monocytes exposed to group B streptococci. J Leukoc Biol 67, 615-621Google Scholar
90Natarajan, G. et al. (2007) Nitric oxide and prostaglandin response to group B streptococcal infection in the lung. Ann Clin Lab Sci 37, 170-176Google ScholarPubMed
91Levy, O. et al. (2003) Critical role of the complement system in group B streptococcus-induced tumor necrosis factor alpha release. Infect Immun 71, 6344-6353Google Scholar
92Goodrum, K.J., McCormick, L.L. and Schneider, B. (1994) Group B streptococcus-induced nitric oxide production in murine macrophages is CR3 (CD11b/CD18) dependent. Infect Immun 62, 3102-3107CrossRefGoogle Scholar
93Henneke, P. et al. (2002) Cellular activation, phagocytosis, and bactericidal activity against group B streptococcus involve parallel myeloid differentiation factor 88-dependent and independent signaling pathways. J Immunol 169, 3970-3977CrossRefGoogle ScholarPubMed
94Puliti, M. et al. (2000) Severity of group B streptococcal arthritis is correlated with β-hemolysin expression. J Infect Dis 182, 824-832Google Scholar
95Ring, A. et al. (2002) Group B streptococcal β-hemolysin induces mortality and liver injury in experimental sepsis. J Infect Dis 185, 1745-1753Google Scholar
96Griffiths, B.B. and Rhee, H. (1992) Effects of haemolysins of groups A and B streptococci on cardiovascular system. Microbios 69, 17-27Google Scholar
97Hensler, M.E., Miyamoto, S. and Nizet, V. (2008) Group B streptococcal β-hemolysin/cytolysin directly impairs cardiomyocyte viability and function PLoS One 3, e2446Google Scholar
98Quirante, J., Ceballos, R. and Cassady, G. (1974) Group B β-hemolytic streptococcal infection in the newborn. I. Early onset infection. Am J Dis Child 128, 659-665Google Scholar
99Berman, P.H. and Banker, B.Q. (1966) Neonatal meningitis. A clinical and pathological study of 29 cases. Pediatrics 38, 6-24CrossRefGoogle ScholarPubMed
100Ferrieri, P., Burke, B. and Nelson, J. (1980) Production of bacteremia and meningitis in infant rats with group B streptococcal serotypes. Infect Immun 27, 1023-1032Google Scholar
101Doran, K.S. et al. (2005) Blood-brain barrier invasion by group B Streptococcus depends upon proper cell-surface anchoring of lipoteichoic acid. J Clin Invest 115, 2499-2507Google Scholar
102Tenenbaum, T. et al. (2005) Adherence to and invasion of human brain microvascular endothelial cells are promoted by fibrinogen-binding protein FbsA of Streptococcus agalactiae. Infect Immun 73, 4404-4409CrossRefGoogle ScholarPubMed
103Doran, K.S., Liu, G.Y. and Nizet, V. (2003) Group B streptococcal β-hemolysin/cytolysin activates neutrophil signaling pathways in brain endothelium and contributes to development of meningitis. J Clin Invest 112, 736-744Google Scholar
104Shin, S. et al. (2006) Focal adhesion kinase is involved in type III group B streptococcal invasion of human brain microvascular endothelial cells. Microb Pathog 41, 168-173Google Scholar
105Shin, S. and Kim, K.S. (2006) RhoA and Rac1 contribute to type III group B streptococcal invasion of human brain microvascular endothelial cells. Biochem Biophys Res Commun 345, 538-542CrossRefGoogle Scholar
106Kim, Y.S. et al. (1995) Brain injury in experimental neonatal meningitis due to group B streptococci. J Neuropathol Exp Neurol 54, 531-539Google Scholar
107Wahl, M. et al. (1988) Mediators of blood-brain barrier dysfunction and formation of vasogenic brain edema. J Cereb Blood Flow Metab 8, 621-634Google Scholar
108Glibetic, M. et al. (2001) Group B Streptococci and inducible nitric oxide synthase: modulation by nuclear factor kappa B and ibuprofen. Semin Perinatol 25, 65-69Google Scholar
109McKnight, A.A. et al. (1992) Oxygen free radicals and the cerebral arteriolar response to group B streptococci. Pediatr Res 31, 640-644Google Scholar
110Bogdan, I. et al. (1997) Tumor necrosis factor-alpha contributes to apoptosis in hippocampal neurons during experimental group B streptococcal meningitis. J Infect Dis 176, 693-697Google Scholar
111Kim, K.S., Wass, C.A. and Cross, A.S. (1997) Blood-brain barrier permeability during the development of experimental bacterial meningitis in the rat. Exp Neurol 145, 253-257Google Scholar
112Lehnardt, S. et al. (2006) A mechanism for neurodegeneration induced by group B streptococci through activation of the TLR2/MyD88 pathway in microglia. J Immunol 177, 583-592Google Scholar
113Lehnardt, S. et al. (2007) TLR2 and caspase-8 are essential for group B Streptococcus-induced apoptosis in microglia. J Immunol 179, 6134-6143CrossRefGoogle Scholar
114Ling, E.W. et al. (1995) Biochemical mediators of meningeal inflammatory response to group B streptococcus in the newborn piglet model. Pediatr Res 38, 981-987Google Scholar
115Paoletti, L.C. and Kasper, D.L. (2002) Conjugate vaccines against group B Streptococcus types IV and VII. J Infect Dis 186, 123-126Google Scholar
116Paoletti, L.C. and Kasper, D.L. (2003) Glycoconjugate vaccines to prevent group B streptococcal infections. Expert Opin Biol Ther 3, 975-984Google Scholar
117Baker, C.J. and Edwards, M.S. (2003) Group B streptococcal conjugate vaccines. Arch Dis Child 88, 375-378Google Scholar
118Lewis, A.L., Nizet, V. and Varki, A. (2004) Discovery and characterization of sialic acid O-acetylation in group B Streptococcus. Proc Natl Acad Sci U S A 101, 11123-11128Google Scholar
119Santillan, D.A., Andracki, M.E. and Hunter, S.K. (2008) Protective immunization in mice against group B streptococci using encapsulated C5a peptidase. Am J Obstet Gynecol 198, 114e111-116Google Scholar
120Brodeur, B.R. et al. (2000) Identification of group B streptococcal Sip protein, which elicits cross-protective immunity. Infect Immun 68, 5610-5618Google Scholar
121Buccato, S. et al. (2006) Use of Lactococcus lactis expressing pili from group B Streptococcus as a broad-coverage vaccine against streptococcal disease. J Infect Dis 194, 331-340CrossRefGoogle ScholarPubMed
122Patten, S. et al. (2006) Vaccination for Group B Streptococcus during pregnancy: attitudes and concerns of women and health care providers. Soc Sci Med 63, 347-358Google Scholar
123Chohan, L. et al. (2006) Patterns of antibiotic resistance among group B Streptococcus isolates: 2001–2004. Infect Dis Obstet Gynecol 2006, 57492CrossRefGoogle ScholarPubMed
124Dahesh, S. et al. (2008) Point mutation in the group B streptococcal pbp2x gene conferring decreased susceptibility to beta-lactam antibiotics. Antimicrob Agents Chemother 52, 2915-2918Google Scholar
125Kimura, K. et al. (2008) First molecular characterization of group B streptococci with reduced penicillin susceptibility. Antimicrob Agents Chemother 52, 2890-2897Google Scholar

Further reading, resources and contacts

Clinical information on GBS infection can be found at the following websites:

Centers for Disease Control (USA):