Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T07:08:37.468Z Has data issue: false hasContentIssue false

Chemical Analysis and Painted Colours: the Mystery of Leonardo's Sfumato

Published online by Cambridge University Press:  30 April 2013

Philippe Walter*
Affiliation:
Laboratoire d'archéologie moléculaire et structurale, LAMS, CNRS-UMR8220, Université Pierre et Marie Curie (UPMC), 4 place Jussieu, 75005 Paris, France. E-mail: philippe.walter@upmc.fr

Abstract

At the end of the 15th century, Italian painters explored the new effects made possible by the use of the oil medium. They created a sense of depth and relief by following the Flemish technique of glazes, which allowed the spreading of very thin and translucent layers, rich in medium and with low pigment content. A striking example is given by the realization of the shadows in the paintings of Leonardo da Vinci: the Master used the so-called ‘sfumato’ technique based on the use of glazes to obtain a ‘smoky’ aspect for the creation of flesh tones, with very subtle contours that seem to have no hard edges. Since the 16th century, his technique was famous due to the perfection of the works of art that glazes have allowed artists to reach. Analytical characterizations of painting materials have helped us to improve our knowledge about this technique. X-ray fluorescence measurements were carried out on seven paintings by Leonardo da Vinci preserved in the Louvre museum. This technique is widely used for qualitative determination of the pigments but it is very difficult to interpret the data quantitatively in the case of layered structures such as easel paintings. As well as the characterization of the palette, we obtain in-depth information on how Leonardo modelled his shadows. Comparisons between the different paintings of Leonardo highlight the specific features in the Leonardo technique.

Type
Focus: The Temptations of Chemistry
Copyright
Copyright © Academia Europaea 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Klaproth, M.H. (1795) Chemische Untersuchung der Metallmasse eines antiken Spiegels, Sammlung der deutschen Abhandlungen, welche in der Königlichen Akademie der Wissenschaften zu Berlin vorgelesen worden in den Jahren; 1792–97. Exper.-Philos., pp. 72–78.Google Scholar
2.Chaptal, J. (1809) Sur quelques couleurs de Pompéi. Annales de Chimie, 70, pp. 2131.Google Scholar
3.Bridgman, C.F. (1964) The amazing patent on the radiography of paintings. Studies in Conservation, 9, pp. 135139.CrossRefGoogle Scholar
4.Faber, A. (1914) Eine Neue Anwendung der Röntgenstrahlen. Umshau, 18, pp. 246253.Google Scholar
5.Hours, M. (1980) La vie Mystérieuse des chefs-d’œuvre: la science au service de l'art (Paris, France: Edition Réunion des Musées Nationaux).Google Scholar
6.Dran, J.C., Salomon, J., Calligaro, T. and Walter, Ph. (2004) Ion beam analysis of art works: 14 years of use in the Louvre. Nuclear Instruments and Methods in Physics Research B, 219–220, pp. 715.CrossRefGoogle Scholar
8.Alfeld, M., Janssens, K., Dik, J., de Nolf, W. and van der Snickt, G. (2011) Optimization of mobile scanning macro-XRF systems for the in situ investigation of historical paintings. Journal of Analytical Atomic Spectrometry, 26, pp. 899909.CrossRefGoogle Scholar
9.Casadio, F., Leona, M., Lombardi, J.R. and Van Duyne, R. (2010) Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy. Accounts of Chemical Research, 43(6), pp. 782791.CrossRefGoogle ScholarPubMed
10.Giakoumaki, A., Melessanaki, K. and Anglos, D. (2007) Laser-induced breakdown spectroscopy (LIBS) in archaeological science—applications and prospects. Analytical and Bioanalytical Chemistry, 387, pp. 749760.CrossRefGoogle ScholarPubMed
11.Miliani, C., Rosi, F., Brunetti, B.G. and Sgamellotti, A. (2010) In situ noninvasive study of artworks: the MOLAB multitechnique approach. Accounts of Chemical Research, 43(6), pp. 728738.CrossRefGoogle ScholarPubMed
12.Chiari, G. (2008) Saving art in situ: a conservation scientist explains how borrowing gadgets from Mars rovers helps pre- serve culture on Earth. Nature, 453, p. 159.CrossRefGoogle Scholar
13.Chiari, G. and Sarrazin, P. (2008) X-DUETTO: a new portable XRD:XRF device. In: P. Tiano and C. Pardini (Eds) In Situ Monitoring of Monumental Surfaces (Firenze, Italy: Edizione Firenze), pp. 451456.Google Scholar
14.Duran, A., Castaing, J. and Walter, Ph. (2010) X-ray diffraction studies of Pompeian wall paintings using synchrotron radiation and dedicated laboratory-made systems. Applied Physics A, 99, pp. 333340.CrossRefGoogle Scholar
15.Gianoncelli, A., Castaing, J., Ortega, L., Dooryhee, E., Salomon, J., Walter, Ph., Hodeau, J.L. and Bordet, P. (2008) A portable instrument for in situ determination of the chemical and phase compositions of Cultural Heritage objects. X-ray Spectrometry, 37, pp. 418423.CrossRefGoogle Scholar
16.Elias, M. and Cotte, P. (2008) Multispectral camera and radiative transfer equation used to depict Leonardo's sfumato in Mona Lisa. Applied Optics, 47, pp. 21462154.CrossRefGoogle ScholarPubMed
17.Zöllner, F. and Nathan, J. (2007) Leonardo Da Vinci, 1452–1519: The Complete Paintings and Drawings (Köln, Germany: Taschen).Google Scholar
18.Kemp, M. (1981) Leonardo da Vinci, The Marvellous Works of Nature and Man (London: Dent).Google Scholar
19.Franck, J. (2007) Léonard, Image et Mathématique de l'insaisissable, catalogue de l'exposition La passion Léonard, Comprendre et Créer au réfectoire des Cordeliers (Paris: Ars Latina), pp. 5661.Google Scholar
20.Mohen, J.P., Menu, M. and Mottin B., B. (2006) Au cœur de La Joconde: Léonard de Vinci décodé (Paris: Centre de Recherche et de Restauration des Musées de France, Gallimard, Musée du Louvre).Google Scholar
21.Syre, C., Schmidt, J. and Stege, H. (2006) Leonardo da Vinci—Die Madonna mit der Nelke, Ausstellung in der Alten Pinakothek, München, Schirmer/Mosel.Google Scholar
22.Keith, L., Roy, A., Morrison, R. and Schade, P. (2011) Leonardo da Vinci: pupil, painter and master. National Gallery Technical Bulletin, 32, pp. 3256.Google Scholar
23.Eveno, M., Mottin, B. and Ravaud, E. (2012) La mise en œuvre de la sainte Anne. In: La Sainte Anne, l'ultime chef-d'oeuvre de Léonard de Vinci, Catalogue de l'exposition Sainte Anne (Officina Libraria/Éditions du musée du Louvre), pp. 366–380.Google Scholar
24.Bruzzone, R. and Galassi, M.C. (2011) Wood species in Italian panel paintings of the fifteenth and sixteenth centuries; historical investigation and microscopical wood identification. In: M. Spring (ed.) Studying Old Master Paintings, Technology and Practice. The National Gallery Technical Bulletin 30th Anniversary Conference Postprints, Archetype Publications in association with the National Gallery, London, pp. 253–259.Google Scholar
25.Grassi, N., Migliori, A., Mando, P.A. and Calvo del Castillo, H. (2004) Identification of lapis-lazuli pigments in paint layers by PIGE measurements. Nuclear Instruments and Methods in Physics Research B, 219–220, pp. 4852.CrossRefGoogle Scholar
26.M. Eveno, B. Moignard and J. Castaing (2011) Portable apparatus for in situ X-ray diffraction and fluorescence analyses of artworks. Microscopy and Microanalysis, 17, 17.Google Scholar
27.Berrie, B. and Matthew, L. (2011) Lead white from Venice: a whiter shade of pale? In: M. Spring (ed.) Studying Old Master Paintings, Technology and Practice. The National Gallery Technical Bulletin 30th Anniversary Conference Postprints, Archetype Publications in association with the National Gallery, London, pp. 295–301.Google Scholar
28.Welcomme, E., Walter, P., Bleuet, P., Hodeau, J.L., Dooryhee, E., Martinetto, P. and Menu, M. (2007) Classification of lead white pigments using synchrotron radiation micro X-ray diffraction. Applied Physics A, 89, pp. 825832.CrossRefGoogle Scholar
29.Welcomme, E., Walter, Ph., Van Elslande, E. and Tsoucaris, G. (2006) Investigation of white pigments used as make-up during the Greco-Roman period. Applied Physics A, 83(4), pp. 551556.CrossRefGoogle Scholar
30.Solé, V.A., Papillon, E., Cotte, M., Walter, Ph. and Susini, J. (2007) A multiplatform code for the analysis of energy-dispersive X- Ray fluorescence spectra. Spectrochimica Acta, B, 62, pp. 63–68 (website: http://pymca.sourceforge.net/).CrossRefGoogle Scholar
31.Mantler, M. (1986) X-ray fluorescence analysis of multiple-layer films. Analytical Chimica Acta, 188, p. 25.CrossRefGoogle Scholar
32.de Viguerie, L., Solé, V.A. and Walter, P. (2009) Multilayers quantitative X-ray fluorescence analysis applied to easel paintings. Analytical and Bioanalytical Chemistry, 395, pp. 20152020.CrossRefGoogle ScholarPubMed
33.de Viguerie, L., Walter, Ph., Laval, E., Mottin, B. and Sole, V.A. (2010) Revealing the sfumato technique of Leonardo da Vinci by X-ray fluorescence spectroscopy. Angewandte Chemie – International Edition, 49, pp. 61256128.CrossRefGoogle Scholar
34.de Viguerie, L., Sole, V.A. and Walter, Ph. (2011) Analyse de tableaux de Léonard de Vinci par spectrométrie de fluorescence des rayons X. Les Techniques de l'Ingénieur, 3, RE. 200, p. 14.Google Scholar
35.Barbera, G. (2006) Antonello da Messina: Sicily's renaissance master (Metropolitan Museum of Art Publications).Google Scholar
36.Maroger, J. (1986) A la recherche des secrets des grands peintres. Préface et documents de Marc Havel (Dessain et Tolra).Google Scholar
37.de Viguerie, L., Ducouret, G., Lequeux, F., Moutard-Martin, T. and Walter, Ph. (2009) Historical evolution of oil painting media: a rheological study. Comptes rendus de Physique, 10, pp. 612621.CrossRefGoogle Scholar
38.Vasari, G. (1998) The Lives of the Artists. A New Translation by Julia Conaway Bondanella and Peter Bondanella (Oxford: Oxford World Classics), p. 217.Google Scholar
39.Winter, J. and West Fitzhugh, E. (2007) Pigments based on carbon. In: B.H. Berri (Ed.), Artists’ Pigments, a Handbook of their History and Characteristics, vol. 4 (Washington and London: National Gallery of Art and Archetype Publications), pp. 138.Google Scholar
40.Richard, P. (2012) Sennelier, l'artisan des couleurs (Editions du Chêne).Google Scholar
41.Villata, E. (2005) Léonard de Vinci (Editions 5 continents).Google Scholar
42.Delieuvin, V. (2012) La Sainte Anne, l'ultime chef-d'oeuvre de Léonard de Vinci, Catalogue de l'exposition Sainte Anne (Officina Libraria/Éditions du musée du Louvre).Google Scholar
43.Spring, M., Mazzotta, A., Roy, A., Billinge, R. and Peggie, D. (2011) Painting practice in Milan in the 1490s: the influence of Leonardo. National Gallery Technical Bulletin, 32, pp. 78112.Google Scholar