Skip to main content
Log in

Viability and activity in readily culturable bacteria: a review and discussion of the practical issues

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

In microbiology the terms ‘viability’ and ‘culturability’ are often equated. However, in recent years the apparently self-contradictory expression ‘viable-but-nonculturable’ (‘VBNC’) has been applied to cells with various and often poorly defined physiological attributes but which, nonetheless, could not be cultured by methods normally appropriate to the organism concerned. These attributes include apparent cell integrity, the possession of some form of measurable cellular activity and the apparent capacity to regain culturability. We review the evidence relating to putative VBNC cells and stress our view that most of the reports claiming a return to culturability have failed to exclude the regrowth of a limited number of cells which had never lost culturability. We argue that failure to differentiate clearly between use of the terms ‘viability’ and ‘culturability’ in an operational versus a conceptual sense is fuelling the current debate, and conclude with a number of proposals that are designed to help clarify the major issues involved. In particular, we suggest an alternative operational terminology that replaces ‘VBNC’ with expressions that are internally consistent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aizenman E, Engelberg-Kulka H & Glaser G (1996) An Escherichia coli chromsomal & #x2018;addiction module & #x2019; regulated by 3 & #x2019;,5 & #x2019;-bispyrophosphate: a model for programmed bacterial cell death. Proc. Natl. Acad. Sci. USA 93: 6059–6063

    Google Scholar 

  • Allen-Austin D, Austin B & Colwell RR (1984) Survival of Aeromonas salmonicida in river water. FEMS Microbiol. Lett. 21: 143–146

    Google Scholar 

  • Amann RI, Ludwig W & Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143–169

    Google Scholar 

  • Barcina I, Arana I, Santorum P, Iriberri J & Egea L (1995) Direct viable count of gram-positive and gram-negative bacteria using ciprofloxacin as inhibitor of cellular division. J. Microbiol. Meth. 22: 139–150

    Google Scholar 

  • Barcina I, Gonzalez JM, Iriberri J & Egea L (1990) Survival strategy of Escherichia coli and Enterococcus faecalis in illuminated fresh and marine systems. J. Appl. Bacteriol. 68: 189–198

    Google Scholar 

  • Barer MR, Gribbon LT, Harwood CR & Nwoguh CE (1993) The viable but non-culturable hypothesis and medical microbiology. Rev. Med. Microbiol. 4: 183–191

    Google Scholar 

  • Batchelor SE, Cooper M, Chhabra SR, Glover LA, Stewart GSAB, Williams P & JIP (1997) Cell density-regulated recovery of starved biofilm populations of ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 63: 2281–2286

    Google Scholar 

  • Beumer RR, Devries J & Rombouts FM (1992) Campylobacter jejuni nonculturable coccoid cells. Int. J. Food Microbiol. 15: 153–163

    Google Scholar 

  • Binnerup SJ, Hojberg O & Gerlif D (1995) Resuscitation demonstrated in a mixed batch of culturable and non-culturable Pseudomonas aeruginosa PA0303. In 7th International Symposium on Microbial Ecology, pp. P1–5.3. SanPaulo, Brazil

  • Binnerup SJ, Jensen DF, Thordal-Christensen H & Sorgensen J (1993) Detection of viable, but non-culturable Pseudomonas fluorescens DF57 in soil using a microcolony epifluorescence technique. FEMS Microbiol. Ecol. 12: 97–105

    Google Scholar 

  • Biosca EG, Amaro C, Marconoales E & Oliver JD (1996) Effect of low temperature on starvation survival of the eel pathogen Vibrio vulnificus biotype-2. Appl. Environ. Microbiol. 62: 450–455

    Google Scholar 

  • Bissonnette GK, Jezeski JJ, McFeters GA & Stuart DG (1975) Influence of environmental stress on enumeration of indicator bacteria from natural waters. Appl. Microbiol. 29: 186–194

    Google Scholar 

  • Bovill RA & Mackey BM (1997) Resuscitation of & #x2018;non-culturable & #x2019; cells from aged cultures of Campylobacter jejuni. Microbiology UK 143, 1575–1581

    Google Scholar 

  • Brayton PR, Tamplin ML, Huq A & Colwell RR (1987) Enumeration of Vibrio cholerae O1 in Bangladesh waters by fluorescent-antibody direct viable count. Appl. Environ. Microbiol. 53: 2862–2865

    Google Scholar 

  • Bridges BA (1996) Elevated mutation rate in mutT bacteria during starvation - evidence for DNA turnover. J. Bacteriol. 178: 2709–2711

    Google Scholar 

  • Button DK, Schut F, Quang P, Martin R & Robertson BR (1993) Viability and isolation of marine bacteria by dilution culture - theory, procedures, and initial results. Appl. Environ. Microbiol. 59: 881–891

    Google Scholar 

  • Button DK, Schut F, Quang P, Martin R & Robertson BR (1993) Viability and isolation of marine-bacteria by dilution culture - theory, procedures, and initial results. Appl. Environ. Microbiol. 59: 881–891

    Google Scholar 

  • Cairns J, Overbaugh J & Miller S (1988) The origin of mutants. Nature 335: 142–145

    Google Scholar 

  • Calcott PH & Postgate JR (1972) On substrate-accelerated death in Klebsiella aerogenes. J. Gen. Microbiol. 70: 115–122

    Google Scholar 

  • Chmielewski RAN & Frank JF (1995) Formation of viable but non-culturable Salmonella during starvation in chemically-defined solutions. Lett. Appl. Microbiol. 20: 380–384

    Google Scholar 

  • Colwell RR, Brayton BR, Grimes DJ, Roszak DB, Huq SA & Palmer LM (1985) Viable but non-culturable Vibrio cholerae and related pathogens in the environment: implications for release of genetically engineered microorganisms. Bio/Technol. 3: 817–820

    Google Scholar 

  • Colwell RR, Brayton P, Herrington D, Tall B, Huq A & Levine MM (1996) Viable but nonculturable Vibrio cholerae-O1 revert to a cultivable state in the human intestine. World J. Microbiol. Biotechnol. 12: 28–31

    Google Scholar 

  • Dance D (1991) Melioidosis - the tip of the iceberg. Clin. Microbiol. Rev. 4: 52–60

    Google Scholar 

  • Davey HM & Kell DB (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single cell analysis. Microbiol. Rev. 60: 641–696

    Google Scholar 

  • Dawe LL & Penrose WR (1978) & #x2018;Bactericidal & #x2019; property of seawater: death or debiliation? Appl. Environ. Microbiol. 35: 829–833

    Google Scholar 

  • De Wit D, Wootton M, Dhillon J & Mitchison DA (1995) The bacterial DNA content of mouse organs in the Cornell model of dormant tuberculosis. Tubercle Lung Dis. 76: 555–562

    Google Scholar 

  • DeMaio J, Zhang Y, Ko C, Young DB & Bishai WR (1996) A stationary-phase stress-response sigma factor from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 93: 2790–2794

    Google Scholar 

  • Diaper JP & Edwards C (1994) The use of fluorogenic esters to detect viable bacteria by flow-cytometry. J. Appl. Bacteriol. 77: 221–228

    Google Scholar 

  • Dow CS, Whittenbury R & Carr NG (1983) The & #x2018;shutdown & #x2019; or & #x2018;growth precursor & #x2019; cell - an adaptation for survival in a potentially hostile environment. In Microbes in their natural environment (Symp. Soc. Gen. Microbiol.), pp. 187–247. Edited by JH Slater, R Whittenbury & JWT Wimpenny. Cambridge: Cambridge University Press

    Google Scholar 

  • Duncan S, Glover LA, Killham K & Prosser JI (1994) Luminescence-based detection of activity of starved and viable but nonculturable bacteria. Appl. Environ. Microbiol. 60: 1308–1316

    Google Scholar 

  • Evdokimova NV, Dorofeev AG & Panikov NS (1994) Dynamics of survival and transition to dormant state of nitrogen-starving bacteria Pseudomonas fluorescens. Microbiol. (Russia) 63: 99–104

    Google Scholar 

  • Ferguson Y, Glover LA, McGillivray DM & Prosser JI (1995) Survival and activity oflux-Marked Aeromonas salmonicida in seawater. Appl. Environ. Microbiol. 61: 3494–3498

    Google Scholar 

  • Franch T & Gerdes K (1996) Programmed cell death in bacteria: translational repression by mRNA end-pairing. Mol. Microbiol. 21: 1049–1060

    Google Scholar 

  • Fry JC (1990) Direct methods and biomass estimation. Methods Microbiol. 22: 41–85

    Google Scholar 

  • Gangadharam PRJ (1995) Mycobacterial dormancy. Tubercle Lung Dis. 76: 477–479

    Google Scholar 

  • Gribbon LT & Barer MR (1995) Oxidative metabolism in nonculturable Helicobacter pylori and Vibrio vulnificus cells studied by substrate-enhanced tetrazolium reduction and digital image processing. Appl. Environ. Microbiol. 61: 3379–3384

    Google Scholar 

  • Hall BG (1995) Genetics of selection-induced mutations.1. uvrA, uvrB, uvrC, and uvrD are selection-induced specific mutator loci. J. Mol. Evoln. 40: 86–93

    Google Scholar 

  • Harris CM & Kell DB (1985) The estimation of microbial biomass. Biosensors 1: 17–84

    Google Scholar 

  • Hattori T (1988). The viable count: quantitative and environmental aspects. Berlin: SpringerVerlag

    Google Scholar 

  • Haugland RP (1992). Molecular Probes: Handbook of fluorescent probes and research chemicals, 5 edn. Eugene, OR USA.: Molecular Probes Inc

    Google Scholar 

  • Hengge-Aronis R (1993) Survival of hunger and stress: the role of rpoS in early stationary phase regulation in E. coli. Cell 72: 165–168

    Google Scholar 

  • Herbert RA (1990) Methods for enumerating microorganisms and determining biomass in natural environments. Methods Microbiol. 22: 1–39

    Google Scholar 

  • Hobson NS, Tothill I & Turner APF (1996) Microbial Detection. Biosensors and Bioelectronics 11: 455–477

    Google Scholar 

  • Husevag B (1995) Starvation survival of the fish pathogen Aeromonas salmonicida in seawater. FEMS Microbiol. Ecol. 16: 25–32

    Google Scholar 

  • Hussong D, Colwell RR, Obrien M, Weiss E, Pearson AD, Weiner RM & Burge WD (1987) Viable Legionella pneumophila not detectable by culture on agar media. Bio/Technol. 5: 947–950

    Google Scholar 

  • Jarvis B & Easter MC (1987) Rapid methods in the assessment of microbiological quality; experiences and needs. Journal of Applied Bacteriology Symposium Supplement, 115S–126S

  • Jazwinski SM (1993) The genetics of aging in the yeast Saccharomyces cerevisiae. Genetica 91: 35–51

    Google Scholar 

  • Jensen RB & Gerdes K (1995) Programmed cell death in bacteria: proteic plasmid stabilization systems. Mol. Microbiol. 17: 205–210

    Google Scholar 

  • Jepras RI, Carter J, Pearson SC, Paul FE & Wilkinson MJ (1995) Development of a robust flow cytometric assay for determining numbers of viable bacteria. Appl. Environ. Microbiol. 61: 2696–2701

    Google Scholar 

  • Jernaes MW & Steen HB (1994) Staining of Escherichia coli for flow cytometry: influx and efflux of ethidium bromide. Cytometry 17: 302–309

    Google Scholar 

  • Jiang XP & Chai TJ (1996) Survival of Vibrio parahaemolyticus at low temperatures under starvation conditions and subsequent resuscitation of viable, nonculturable cells. Appl. Environ. Microbiol. 62: 1300–1305

    Google Scholar 

  • Joliffe LK, Doyle RJ & Streips UN (1981) The energised membrane and cellular autolysis of Bacillus subtilis. Cell 25: 753–763

    Google Scholar 

  • Jones DM, Sutcliffe EM & Curry A (1991) Recovery of viable but non-culturable Campylobacter jejuni. J. Gen. Microbiol. 137: 2477–2482

    Google Scholar 

  • Kaprelyants AS, Gottschal JC & Kell DB (1993) Dormancy in non-sporulating bacteria. FEMS Microbiol. Rev. 104: 271–286

    Google Scholar 

  • Kaprelyants AS & Kell DB (1992) Rapid assessment of bacterial viability and vitality using rhodamine 123 and flow cytometry. J. Appl. Bacteriol. 72: 410–422

    Google Scholar 

  • Kaprelyants AS & Kell DB (1993) Dormancy in stationary-phase cultures of Micrococcus luteus: flow cytometric analysis of starvation and resuscitation. Appl. Environ. Microbiol. 59: 3187–3196

    Google Scholar 

  • Kaprelyants AS & Kell DB (1996) Do bacteria need to communicate with each other for growth? Trends Microbiol. 4: 237–242

    Google Scholar 

  • Kaprelyants AS, Mukamolova GV, Davey HM & Kell DB (1996) Quantitative analysis of the physiological heterogeneity within starved cultures of Micrococcus luteus by flow cytometry and cell sorting. Appl. Environ. Microbiol. 62: 1311–1316

    Google Scholar 

  • Kaprelyants AS, Mukamolova GV & Kell DB (1994) Estimation of dormant Micrococcus luteus cells by penicillin lysis and by resuscitation in cell-free spent medium at high dilution. FEMS Microbiol. Lett. 115: 347–352

    Google Scholar 

  • Keilin D (1959) The problem of anabiosis or latent life: history and current concept. Proc. R. Soc. Ser. B 150: 149–191

    Google Scholar 

  • Kell DB (1988) Protonmotive energy-transducing systems: some physical principles and experimental approaches. In Bacterial Energy Transduction, pp. 429–490. Edited by CJ Anthony. London: Academic Press

    Google Scholar 

  • Kell DB, Kaprelyants AS & Grafen A (1995) On pheromones, social behaviour and the functions of secondary metabolism in bacteria. Trends Ecol. Evol. 10: 126–129

    Google Scholar 

  • Kell DB, Markx GH, Davey CL & Todd RW (1990) Real-time monitoring of cellular biomass - methods and applications. Trends Anal. Chem. 9: 190–194

    Google Scholar 

  • Kell DB, Ryder HM, Kaprelyants AS & Westerhoff HV (1991) Quantifying heterogeneity - flow cytometry of bacterial cultures. Antonie Van Leeuwenhoek 60: 145–158

    Google Scholar 

  • Kell DB & Sonnleitner B (1995) GMP - Good Modelling Practice: an essential component of good manufacturing practice. Trends Biotechnol. 13: 481–492

    Google Scholar 

  • Koch AL (1994) Growth measurement. In Methods for General and MolecularBacteriology, pp. 248–277. Edited by P Gerhardt, RGE Murray, WA Wood & NR Krieg. Washington, D. C.: American Society for Microbiology

    Google Scholar 

  • Kogure K, Simidu U & Taga N (1979) A tentative direct microscopic method of counting living bacteria. Can. J. Microbiol. 25: 415–420

    Google Scholar 

  • Kolter R, Siegele DA & Tormo A (1993) The stationary phase of the bacterial life cycle. Ann. Rev. Microbiol. 47: 855–874

    Google Scholar 

  • Lappin-Scott HM, Cusack F, Macleod A & Costerton JW (1988) Starvation and nutrient resuscitation of Klebsiella pneumoniae isolated from oil well waters. J. Appl. Bacteriol. 64: 541–549

    Google Scholar 

  • Lewis K (1994) Multidrug resistance pumps in bacteria: varations on a theme. Trends Biochem. Sci. 19: 119–123

    Google Scholar 

  • Lloyd D (1993). Flow cytometry inmicrobiology. London: SpringerVerlag

    Google Scholar 

  • MacDonell M & Hood M (1982) Isolation and characterization of ultramicrobacteria from a gulf coast estuary. Appl. Environ. Microbiol. 43: 566–571

    Google Scholar 

  • Magarinos B, Romalde J, Barja J & Toranzo AE (1994) Evidence of a dormant but infective state of the fish pathogen Pasteurella piscicida in seawater and sediment. Appl. Environ. Microbiol. 60: 180–186

    Google Scholar 

  • Manafi M, Kneifel W & Bascomb S (1991) Fluorogenic and chromogenic substrates used in bacterial diagnostics. Microbiol. Rev. 55: 335–348

    Google Scholar 

  • Matin A (1994) Starvation promoters of Escherichia coli - their function, regulation, and use in bioprocessing and bioremediation. Ann. N. Y. Acad. Sci. 721: 277–291

    Google Scholar 

  • McCune RM, Feldmann FM, Lambert HP & McDermott W (1966) Microbial persistence. I. The capacity of tubercle bacilli to survive sterilization in mouse tissues. J. Exp. Med. 123: 445–468

    Google Scholar 

  • McFeters GA & Singh A (1991) Effects of aquatic environmental stress on enteric bacterial pathogens. J. Appl. Bacteriol. 70: S115–S120

    Google Scholar 

  • McFeters GA, Yu FPP, Pyle BH & Stewart PS (1995) Physiological assessment of bacteria using fluorochromes. J. Microbiol. Meth. 21: 1–13

    Google Scholar 

  • McInerney MJ, Bryant MP, Hespell RB & Costerton JW (1981) Syntrophomonas wolfei Gen. Nov. Sp. Nov., an anaerobic, syntrophic, fatty acid oxidizing bacterium. Appl. Environ. Microbiol. 41: 1029–1039

    Google Scholar 

  • Meyer RD (1983) Legionella infections - a review of 5 years of research. Rev. Inf. Dis. 5: 258–278

    Google Scholar 

  • Meynell GG & Meynell E (1970) Theory and practice in experimental bacteriology., pp 347. Cambridge: Cambridge University Press

    Google Scholar 

  • Moir A, Kemp EH, Robinson C & Corfe BM (1994) The genetic-analysis of bacterial spore germination. J. Appl. Bacteriol. 76: S 9–S 16

    Google Scholar 

  • Mor N, Resnick M, Silbaq F, Bercovier H & Levy L (1988) Reduction of tellurite and deesterification of fluorescein diacetate are not well correlated with the viability of mycobacteria. Ann. Inst. Pasteur 139: 279–288

    Google Scholar 

  • Morgan J, Cranwell P & Pickup R (1991) Survival of Aeromonas salmonicida in lake water. Appl. Environ. Microbiol. 57: 1777–1782

    Google Scholar 

  • Morgan JAW, Clarke KJ, Rhodes G & Pickup RW (1992) Nonculturable Aeromonas salmonicida in lake water. Microbial Releases 1: 71–78

    Google Scholar 

  • Mukamolova GV, Kaprelyants AS & Kell DB (1995) Secretion of an antibacterial factor during resuscitation of dormant cells in Micrococcus luteus cultures held in an extended stationary phase. Antonie Van Leeuwenhoek 67: 289–295

    Google Scholar 

  • Nilsson L, Oliver JD & Kjelleberg S (1991) Resuscitation of Vibrio vulnificus from the viable but nonculturable state. J. Bacteriol. 173: 5054–5059

    Google Scholar 

  • Nwoguh CE, Harwood CR & Barer MR (1995) Detection of induced b-galactosidase activity in individual non-culturable cells of pathogenic bacteria by quantitative cytological assay. Mol. Microbiol. 17: 545–554

    Google Scholar 

  • Oliver JD (1993) Formation of viable but nonculturable cells. In Starvation in bacteria, pp. 239–272. Edited by S. Kjelleberg. New York: Plenum

    Google Scholar 

  • Oliver JD & Bockian R (1995) In vivo resuscitation, and virulence towards mice, of viable but nonculturable cells of Vibrio vulnificus. Appl. Environ. Microbiol. 61: 2620–2623

    Google Scholar 

  • Oliver JD, Hite F, McDougald D, Andon NL & Simpson LM (1995) Entry into, and resuscitation from, the viable but nonculturable state by Vibrio vulnificus in an estuarine environment. Appl. Environ. Microbiol. 61: 2624–2630

    Google Scholar 

  • & #x00D6;stling J, Holmquist L, Fl & #x00E4;rdh K, Svenblad B, Jouper-Jaan & #x00C8; & Kjelleberg S (1993) Starvation and recovery of marine Vibrio. In Starvation in bacteria, pp. 103–127 Edited by S. Kjelleberg. New York: Plenum Press.

    Google Scholar 

  • Pearson AD, Greenwood M, Healing TD, Rollins D, Shahamat M, Donaldson J & Colwell RR (1993) Colonization of broiler chickens by waterborne Campylobacter jejuni. Appl. Environ. Microbiol. 59: 987–996

    Google Scholar 

  • Poindexter JS (1981) Oligotrophy: fast and famine existence. Adv. Microbial Ecol. 5: 63–89

    Google Scholar 

  • Postgate J (1967) Viability measurements and the survival of microbes under minimum stress. In Advances in Microbial Physiology, pp. 1–21 Edited by AH Rose & J Wilkinson. London: Academic Press

    Google Scholar 

  • Postgate JR (1969) Viable counts and viability. Meth. Microbiol. 1: 611–628

    Google Scholar 

  • Postgate JR (1976) Death in microbes and macrobes. In The Survival Of Vegetative Microbes, pp. 1–19. Edited by TRG Gray & JR Postgate. Cambridge: Cambridge University Press.

    Google Scholar 

  • Postgate JR & Hunter JR (1963) Acceleration of bacterial death by growth substrates. Nature 198: 273–280

    Google Scholar 

  • Postgate JR & Hunter JR (1964) Accelerated death of Aerobacter aerogenes starved in the presence of growth-limiting substrates. J. Gen. Microbiol. 34: 459–473

    Google Scholar 

  • Primas H (1981) Chemistry, Quantum Mechanics and Reductionism. Berlin: Springer

    Google Scholar 

  • Rahman I, Shahamat M, Chowdhury MAR & Colwell RR (1996) Potential virulence of viable but nonculturable Shigella dysenteriae Type-1. Appl. Environ. Microbiol. 62: 115–120

    Google Scholar 

  • Ravel J, Knight IT, Monahan CE, Hill RT & Colwell RR (1995) Temperature-Induced recovery of Vibrio cholerae from the viable but nonculturable state - growth or resuscitation. Microbiology UK 141: 377–383

    Google Scholar 

  • Ray B & Speck ML (1972) Repair of injury induced by freezing E. coli as influenced by the recovery medium? Appl. Microbiol. 24: 258–263

    Google Scholar 

  • Ray B & Speck ML (1973) Freeze-injury in bacteria. CRC Crit. Rev. Clin. Lab. Sci. 4: 161–213

    Google Scholar 

  • Relman DA, Schmidt TM, Macdermott RP & Falkow S (1992) Identification of the uncultured bacillus of Whipple & #x2019;s disease. N. Eng. J. Med. 327: 293–301

    Google Scholar 

  • Rodriguez GG, Phipps D, Ishiguro K & Ridgway HF (1992) Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl. Environ. Microbiol. 58: 1801–1808

    Google Scholar 

  • Rollins DM & Colwell RR (1986) Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl. Environ. Microbiol. 52: 531–538

    Google Scholar 

  • Romalde JL, Barja JL, Magarinos B & Toranzo AE (1994) Starvation survival processes of the bacterial fish pathogen Yersinia ruckeri. Syst. Appl. Microbiol. 17: 161–168

    Google Scholar 

  • Rose AS, Ellis AE & Munro ALS (1990) Evidence against dormancy in the bacterial fish pathogen Aeromonas salmonicida subsp salmonicida. FEMS Microbiol. Lett. 68: 105–107

    Google Scholar 

  • Roszak D & Colwell RR (1985) Viable but non-culturable bacteria in the aquatic environment. J. Appl. Bacteriol. 59: R 9–R 9

    Google Scholar 

  • Roszak DB & Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51: 365–379

    Google Scholar 

  • Roszak DB, Grimes DJ & Colwell RR (1984) Viable but nonrecoverable stage of Salmonella enteritidis in aquatic systems. Can. J. Microbiol. 30: 334–338.

    Google Scholar 

  • Russek E & Colwell RR (1983) Computation of Most Probable Numbers. Appl. Environ. Microbiol. 45: 1646–1650

    Google Scholar 

  • Schr & #x00F6;dinger E (1935) Die genenw & #x00E4;rtige Situation in der Quantenmechanik. Naturwissenschaften 23: 807–849

    Google Scholar 

  • Schut F, Devries EJ, Gottschal JC, Robertson BR, Harder W, Prins RA & Button DK (1993) Isolation of typical marine bacteria by dilution culture - growth, maintenance, and characteristics of isolates under laboratory conditions. Appl. Environ. Microbiol. 59: 2150–2160

    Google Scholar 

  • Shapiro HM (1995) Practical Flow Cytometry, 3rd edition, 3rd edn. New York: John Wiley

    Google Scholar 

  • Sonnleitner B, Locher G & Fiechter A (1992) Biomass determination. J. Biotechnol. 25: 5–22

    Google Scholar 

  • Stevenson L (1978) A case for bacterial dormancy in aquatic systems. Microbial Ecol. 4: 127–133

    Google Scholar 

  • Sussman S & Halvorson H (1966). Spores, their dormancy and germination. New York: Harper and Row

    Google Scholar 

  • Torsvik V, Sorheim R & Goksoyr J (1996) Total bacterial diversity in soil and sediment communities - A review. J. Indust. Microbiol. 17: 170–178

    Google Scholar 

  • von Nebe-Caron G & Badley RA (1995) Viability assessment of bacteria in mixed populations using flow cytometry. J. Microsc. - Oxford 179: 55–66

    Google Scholar 

  • Votyakova TV, Kaprelyants AS & Kell DB (1994) Influence of viable cells on the resuscitation of dormant cells in Micrococcus luteus cultures held in an extended stationary phase - the population effect. Appl. Environ. Microbiol. 60: 3284–3291

    Google Scholar 

  • Wai SN, Moriya T, Kondo K, Misumi H & Amako K (1996) Resuscitation of Vibrio cholerae O1 strain tsi4 from a viable but nonculturable state by heat shock. FEMS Microbiol. Lett. 136: 187–191

    Google Scholar 

  • Watson L (1987) The Biology of Death (previously published as The Romeo Error). London: Sceptre Books

    Google Scholar 

  • Wayne LG (1994) Dormancy of Mycobacterium tuberculosis and latency of disease. Eur. J. Clin. Microbiol. Inf. Dis. 13: 908–914

    Google Scholar 

  • Weichart D & Kjelleberg S (1996) Stress resistance and recovery potential of culturable and viable but nonculturable cells of Vibrio vulnificus. Microbiology UK 142: 845–853

    Google Scholar 

  • Weichart D, Oliver JD & Kjelleberg S (1992) Low-temperature induced nonculturability and killing of Vibrio vulnificus. FEMS Microbiol. Lett. 100: 205–210

    Google Scholar 

  • Whitesides MD & Oliver JD (1997) Resuscitation of Vibrio vulnificus from the viable but nonculturable state. Appl. Environ. Microbiol. 63: 1002–1005

    Google Scholar 

  • Xu HS, Roberts N, Singleton FL, Attwell RW, Grimes DJ & Colwell RR (1982) Survival and Viability Of Nonculturable Escherichia Coli and Vibrio Cholerae in the estuarine and marine environment. Microbial Ecol. 8: 313–323

    Google Scholar 

  • Yamamoto H, Hashimoto Y & Ezaki T (1996) Study of nonculturable Legionella pneumophila cells during multiple nutrient starvation. FEMS Microbiol. Ecol. 20: 149–154

    Google Scholar 

  • Young DB & Duncan K (1995) Prospects for new interventions in the treatment and prevention of mycobacterial disease. Ann. Rev. Microbiol. 49: 641–673

    Google Scholar 

  • Zambrano MM, Siegele DA, Almiron M, Tormo A & Kolter R (1993) Microbial competition - Escherichia coli mutants that take over stationary phase cultures. Science 259: 1757–1760

    Google Scholar 

  • Zimmermann R, Iturriaga R & Becker-Birck J (1978) Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl. Environ. Microbiol. 36: 926–935

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kell, D.B., Kaprelyants, A.S., Weichart, D.H. et al. Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie Van Leeuwenhoek 73, 169–187 (1998). https://doi.org/10.1023/A:1000664013047

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000664013047

Navigation