Skip to main content
Log in

Multi-domain, cell-envelope proteinases of lactic acid bacteria

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The multi-domain, cell-envelope proteinases encoded by the genes prtB of Lactobacillus delbrueckii subsp. bulgaricus, prtH of Lactobacillus helveticus, prtP of Lactococcus lactis, scpA of Streptococcus pyogenes and csp of Streptococcus agalactiae have been compared using multiple sequence alignment, secondary structure prediction and database homology searching methods. This comparative analysis has led to the prediction of a number of different domains in these cell-envelope proteinases, and their homology, characteristics and putative function are described. These domains include, starting from the N-terminus, a pre-pro-domain for secretion and activation, a serine protease domain (with a smaller inserted domain), two large middle domains A and B of unknown but possibly regulatory function, a helical spacer domain, a hydrophilic cell-wall spacer or attachment domain, and a cell-wall anchor domain. Not all domains are present in each cell-envelope proteinase, suggesting that these multi-domain proteins are the result of gene shuffling and domain swapping during evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403-410

    Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W & Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25: 3389-3402

    Google Scholar 

  • Baron M, Norman DG & Campbell ID (1991) Protein modules. Trends Biochem. Sci. 16: 13-17

    Google Scholar 

  • Barr PJ (1991) Mammalian subtilisins: The long-sought dibasic processing endoproteases. Cell 66: 1-3

    Google Scholar 

  • Berger B, Wilson DB, Wolf E, Tonchev T, Milla M & Kim PS (1995) Predicting coiled coils by use of pairwise residue correlations. Proc Natl Acad Sci 92: 8259-8263

    Google Scholar 

  • Boot HJ, Kolen CPAM & Pouwels PH (1995) Identification, cloning and nucleotide sequence of a silent S-layer protein gene of Lactobacillus acidophilus ATCC 4356 which has extensive similarity with the S-layer protein gene of this species. J. Bacteriol. 177: 7222-7230

    Google Scholar 

  • Bork P (1991) Shuffled domains in extracellular proteins. FEBS Letters 286: 47-54

    Google Scholar 

  • Bruinenberg PG, Doesburg P, Alting AC, Exterkate FA, deVos WM & Siezen RJ (1994a) Evidence for a large dispensable segment in the subtilisin-like catalytic domain of the Lactococcus lactis cell-envelope proteinase. Protein Eng. 7: 991-996

    Google Scholar 

  • Bruinenberg PG, deVos WM & Siezen RJ (1994b) Prevention of C-terminal autoprocessing of Lactococcus lactis SKI 1 cell-envelope proteinase by engineering of an essential surface loop. Biochem. J. 302: 957-963

    Google Scholar 

  • Buist G, Venema G & Kok J (1998) Autolysis of Lactococcus lactis is influenced by proteolysis. J. Bacteriol. 180, 5947-5953

    Google Scholar 

  • Bullough PA, Hughson FM, Skehel JJ & Wiley JJ (1994) Structure of influenza heamagglutinin at the pH of membrane fusion. Nature 371: 37-43

    Google Scholar 

  • Campbell ID & Downing AK (1994) Building protein structure and function from modular units. Trends Biotech. 12: 168-172

    Google Scholar 

  • Chen CC & Cleary PP (1989) Cloning and expression of the streptococcal C5a peptidase gene in Escherichia coli: linkage to the type 12 m protein gene. Infect. and Immun. 57: 1740-1745

    Google Scholar 

  • Chen CC & Cleary PP (1990) Complete nucleotide sequence of the streptococcal C5a peptidase gene of Streptococcus pyogenes. J. Biol. Chem. 265: 3161-3167

    Google Scholar 

  • Chmouryguina I, Suvorov A, Ferrieri P & Cleary PP (1996) Conservation of the C5a peptidase genes in group A and B streptococci. Infect. and Immun. 64: 2387-2390

    Google Scholar 

  • Coggins JR (1991) Deletions, fusions and domain rearrangements. Current Opinion Biotech. 2: 576-581

    Google Scholar 

  • Coolbear T, Reid JR & Pritchard GG (1992) Stability and specificity of the cell-wall associated proteinase from Lactococcus lactis subsp. H2 released by treatment with lysozyme in the presence of calcium ions. Appl. Environm. Microbiol. 58: 3263-3270

    Google Scholar 

  • Devereux J, Haeberli P & Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic. Acid Res. 12: 387-395

    Google Scholar 

  • De Vos WM & Siezen RJ (1994) Engineering pivotal proteins for lactococcal proteolysis. In: Andrews AT & Varley J (Eds) Biochemistry of Milk Products, Royal Society of Chemistry, Cambridge, UK, pp. 56-71

    Google Scholar 

  • Doolittle RF & Bork P (1993) Evolutionary mobile modules in proteins. Sci. American, Oct.: 34-40

  • Exterkate FA (1990) Differences in short peptide-substrate cleavage by two cell-envelope-located serine proteinases of Lactococcus lactis subsp. cremoris are related to secondary binding specificity. Appl. Microbiol. Biotechnol. 33: 401-406

    Google Scholar 

  • Exterkate FA, Alting AC & Slangen CJ (1991) Specificity of two genetically related cell-envelope proteinases of Lactococcus lactis subsp. cremoris towards α s1-casein-(1-23)-fragment. Biochem. J. 273: 135-139

    Google Scholar 

  • Exterkate FA, Alting AC & Bruinenberg PG (1993) Diversity of cell envelope proteinase specificity among strains of Lactococcus lactis and its relationship to charge characteristics of the substrate-binding region. Appl. Environm. Microbiol. 59: 3640-3647

    Google Scholar 

  • Exterkate FA (1995) The lactococcal cell envelope proteinases: differences, calcium-binding effects and role in cheese ripening. Int. Dairy Journal 5: 995-1018

    Google Scholar 

  • Exterkate FA & Alting AC (1999) The role of calcium in the activity and stability of the Lactococcus lactis cell-envelope proteinase. Appl. Environm. Microbiol., in press

  • Fischetti VA (1991) Streptococcal m protein. Sci. American, June: 32-39

  • Fischetti VA, Pancholi V & Schneewind O (1991) Common characteristics of the surface proteins from gram-positive cocci. In: Dunny GM, Cleary PP & McKay LL (Eds) Genetics and Molecular Biology of Streptococci, Lactococci, and Enterococci, American Society for Microbiol., pp. 290-294

  • Gallagher T, Gilliland G, Wang L & Bryan P (1995) The prosegment-subtilisin BPN' complex: crystal structure of a specific'foldase'. Structure 3: 907-914

    Google Scholar 

  • Gilbert C, Atlan D, Portalier R, Germond GJ, Lapierre L & Mollet B (1996) A new cell surface proteinase: sequencing and analysis of the prtB gene from Lactobacillus delbrueckii subsp. bulgaricus. J. Bacteriol. 78: 3059-3065

    Google Scholar 

  • Gilbert C, Blanc B, Frot-Coutaz J, Portalier R & Atlan D (1997) Comparison of cell surface proteinase activities within the Lactobacillus genus. J. Dairy Res. 64: 561-571

    Google Scholar 

  • Goward CR, Scawen MD, Murphy JP & Atkinson T (1993) Molecular evolution of bacterial cell-surface proteins. Trends Biochem. Sci. 18: 136-140

    Google Scholar 

  • Haandrikman AJ, Kok J, Laan H, Soemitro S, Ledeboer AM, Konings WN & Venema G (1989) Identification of a gene required for maturation of an extracellular lactococcal serine proteinase. J. Bacteriol. 171: 2789-2794

    Google Scholar 

  • Haandrikman AJ, Kok J & Venema G (1991) Lactococcal proteinase maturation protein PrtM is a lipoprotein. J. Bacteriol. 173: 4517-4525

    Google Scholar 

  • Hardie JM & Wiley RA (1994) The genus Streptococcus. In: Wood BJB & Holzapfel WH (Eds) The Lactic Acid Bacteria vol. 2, The Genera of Lactic Acid Bacteria, Blackie Academic and Professional, London, pp. 55-124

    Google Scholar 

  • Heringa J, Argos P, Egmond MR & de Vlieg J (1995) Increasing thermal stability of subtilisin from mutations suggested by strongly interacting side-chain clusters. Protein Eng. 8: 21-30

    Google Scholar 

  • Holck A & Naes H (1992) Cloning, sequencing and expression of the gene encoding the cell-envelope-associated proteinase from Lactobacillus paracasei subsp. paracasei NCDO 151. J. Gen. Microbiol. 138: 1353-1364

    Google Scholar 

  • Hugenholtz J, van Sinderen D, Kok J & Konings WN (1987) Cell wall-associated proteases of Streptococcus cremoris Wg2. Appl. Environm. Microbiol. 53: 853-859

    Google Scholar 

  • Jain SC, Shinde U, Yuyan L, Inouye M & Berman H. The crystal structure of an autoprocessed Ser221Cys-subtilisin E-propeptide complex al 2.0 Å resolution. J.Mol. Biol. 284: 137-144

  • Jacobs M, Andersen JB, Kontinen V & Sarvas M (1993) Bacillus subtilis PrsA is required in vivo as an extracytoplasmic chaperone for secretion of active enzymes synthesized either with or without prosequences. Mol. Microbiol. 8: 957-966

    Google Scholar 

  • King RD & Sternberg MJE (1999) Identification and application of concepts important for accurate and reliable protein secondary structure prediction. Protein Science, in press

  • Kiwaki M, Ikemura H, Shimizu-Kadota M & Hirashima A (1989) Molecular characterization of a cell wall-associated proteinase gene from Streptococcus lactis NCDO763. Molec. Microbiol. 3: 359-369

    Google Scholar 

  • Kodama T, Freeman M, Rohrer L, Zabrecky J, Matsudaira P & Krieger M (1990) Type I macrophage scavenger receptor contains α-helical and collagen-like coiled coils. Nature 343: 531-535

    Google Scholar 

  • Kok J (1990) Genetics of the proteolytic system of lactic acid bacteria. FEMS Microbiol. Rev. 87: 15-42

    Google Scholar 

  • Kok J & Venema G (1988) Genetics of proteinases in lactic acid bacteria. Biochimie 70: 475-488

    Google Scholar 

  • Kok J & de Vos WM (1994) The proteolytic system of lactic acid bacteria. In: Gasson MJ & de Vos WM (Eds) Genetics and Biotechnology of Lactic Acid Bacteria Blackie and Professional, London, pp. 169-210

  • Kok J, Leenhouts KJ, Haandikman AJ, Ledeboer AM & Venema G (1988) Nucleotide sequence of the cell wall proteinase gene of Streptococcus cremoris Wg2. Appl. and Environm. Microbiol. 54: 231-238

    Google Scholar 

  • Kok J, Hill D, Haandrikman AJ, de Reuver MJB, Laan H & Venema G (1988) Deletion analysis of the proteinase gene of Streptococcus cremoris Wg2. Appl Environm Microbiol 54: 239-244

    Google Scholar 

  • Kunji ERS, Mierau I, Hagting A, Poolman B & Konings WN (1996) The proteolytic systems of lactic acid bacteria. Ant. van Leeuwenhoek 70: 187-221

    Google Scholar 

  • Laan H & Konings WN (1989) The mechanism of protein release from Lactococcus lactis subspecies cremoris Wg2. Appl. Environm. Microbiol. 55: 3103-3106

    Google Scholar 

  • Laloi P, Atlan D, Blanc B, Gilbert C & Portalier R (1991) Cell-wall associated proteinase of Lactobacillus delbrueckii subsp. bulgaricus CNRZ397: differential extraction, purification and properties of the enzyme. Appl. Environm. Microbiol. 36: 196-204

    Google Scholar 

  • Lupas A (1996a) Coiled coils: new structures and new functions. Trends Biochem. Sci. 21: 375-382

    Google Scholar 

  • Lupas A (1996b) Prediction and analysis of coiled-coil structures. Meth Enzymology 266: 513-525

    Google Scholar 

  • Margot P & Karamata D (1996) The wprA gene of Bacillus subtilis 168, expressed during exponential growth, encodes a cell-wall-associated protease. Microbiol. 142: 3437-3444

    Google Scholar 

  • Martín-Hernández MC, Ailing AC & Exterkate FA (1994) Purification and characterization of the mature, membrane-associated cell-envelope proteinase of Lactobacillus helveticus L89. Appl. Microbiol. Biotechnol. 40: 828-834

    Google Scholar 

  • Matuschek M, Burchhardt G, Sahm K & Bahl H (1994) Pullalanase of Thermoanaerobacterium thermosulphurigenes EM1 (Clostridium thermosulphurogenes): molecular analysis of the gene, composite structure of the enzyme, and a common model for its attachment to the cell surface. J. Bacteriol. 176: 3295-3302

    Google Scholar 

  • Mierau I, Kunji ERS, Venema G & Kok J (1997) Casein and peptide degradation in lactic acid bacteria. Biotechn. Gen. Engin. Rev. 14: 279-301

    Google Scholar 

  • Mills OE & Thomas TD (1981) Nitrogen sources for growth of lactic streptococci in milk. N.Z. J. Dairy Sci. Technol. 16: 43-55

    Google Scholar 

  • Molinari M & Carafoli E (1997) Calpain: A cytosolic proteinase active at the membranes. J. Membrane Biol. 156: 1-8

    Google Scholar 

  • Nakayama K (1997) Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem. J. 327: 625-635

    Google Scholar 

  • Navarre WW & Schneewind O (1994) Proteolytic cleavage and cell wall anchoring al the LPXTG motif of surface proteins in Gram-positive bacteria. Mol. Micobiol. 14: 115-121

    Google Scholar 

  • Nissen-Meyer J, Lillehaug D & Nes IF (1992) The plasmid-encoded lactococcal envelope-associated proteinase is encoded by a chromosomal gene in Lactococcus lactis subsp. cremoris BC 101. Appl. and Environm. Microbiol. 58: 750-753

    Google Scholar 

  • Pearson WR & Lipman DJ (1988) Improved tools for biological sequence comparison. Proc. Nail. Acad. Sci. USA 85: 2444-2448

    Google Scholar 

  • Perona JJ & Craik CS (1995) Structural basis of substrate specificity in the serine proteases. Protein Science 4: 337-360

    Google Scholar 

  • Podbielski A, Flosdorff A & Weber-Heynemann J (1995) The group A streptococcal virR49 gene controls expression of four structural vir regulon genes. Infect. and Immun. 63: 9-20

    Google Scholar 

  • Pritchard GG & Coolbear T (1993) The physiology and biochemistry of the proteolytic system in lactic acid bacteria. FEMS Microbiol. Rev. 12: 179-206

    Google Scholar 

  • Rahfeld JU, Rucknagel KR, Schelbert B, Ludwig B, Hacker J, Mann K & Fischer G (1994) Confirmation of the existence of a third family among peptidyl-prolyl cis/trans isomerases. FEBS Letters 352:180-184

    Google Scholar 

  • Rost B & Sander C (1993) Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol. 232: 584-599

    Google Scholar 

  • Rost B & Sander C (1994) Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 19: 55-77

    Google Scholar 

  • Rudd KE, Sofia JH, Koonin EV, Plunkett G III, Lazar S & Rouviere PE (1995) A new family of peptidyl-prolyl isomerases. Trends Biochem. Sci. 20: 12-14

    Google Scholar 

  • Sankaran K & Wu HC (1994) Lipid modification of bacterial lipoprotein: transfer of diacylglyceryl moiety from phosphatidylglycerol. J. Biol. Chem. 269: 19701-19706

    Google Scholar 

  • Schmidt BF, Woodhouse L, Adams RM, Ward T, Mainzer SE & Lad PJ (1995) Alkalophilic Bacillus sp. strain LG12 has a series of serine protease genes. Appl. Environm. Microbiol. 61: 4490-4493

    Google Scholar 

  • Siezen RJ, de Vos WM, Leumssen JAM & Dijkstra BW (1991) Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteases. Protein Engin. 4: 719-737

    Google Scholar 

  • Siezen RJ, Bruinenberg PG, Vos P, van Alen-Boerrigter IJ, Nijhuis M, Alting AC, Exterkate FA, de Vos WM (1993) Engineering of the substrate binding region of the subtilisin-like, cell-envelope proteinase of Lactococcus lactis. Protein Engin. 6: 927-937

    Google Scholar 

  • Siezen RJ, Leunissen JAM & Shinde U (1995) Homology analysis of the propeptides of subtilisin-like serine proteases (subtilases). In: Shinde, U, (Ed) Intramolecular Chaperones and Folding, R.G. Landes Company, pp 231-253

  • Siezen RJ & Leunissen JAM (1997) Subtilases: the superfamily of subtilisin-like serine proteases. Prot. Science 6: 501-523

    Google Scholar 

  • Simpson WJ, LaPenta D, Chen C & Cleary PP (1990) Coregulation of type 12m protein and streptococcal C5a peptidase genes in group A streptococci: evidence for a virulence regulon controlled by the virR Locus. J. Bacteriol. 172: 696-700

    Google Scholar 

  • Sleytr UB & Sara M (1997) Bacterial and arcaeal S-layer proteins: structure-function relationships and their biotechnological applications. Trends Biotech. 15: 20-26

    Google Scholar 

  • Sloma A, Ally A, Ally D & Pero J (1988) Gene encoding a minor extracellular protease ofBacillus subtilis. J Bacteriol. 170: 5557-5563

    Google Scholar 

  • Smid EJ, Poolman B & Konings WN (1991) Casein utilization by lactococci. Appl. Environm. Microbiol. 57: 2447-2452

    Google Scholar 

  • Stefanitsi D, Sakellaris G & Garel J-R (1995) The presence of two proteinases associated with the cell wall of Lactobacillus bulgaricus. FEMS Microbiol. Lett. 128: 53-58

    Google Scholar 

  • Strauss A & Götz F (1996) In vivo immobilization of enzymatically active polypeptides on the cell surface of Staphylococcus carnosus. Mol. Microbiol. 21: 491-500

    Google Scholar 

  • Suzuki K (1987) Calcium-activated neutral protease: domain structure and activity regulation. Trends Biochem. Sci. 12: 103-105

    Google Scholar 

  • Tan PST, Poolman B & Konings WN (1993) Proteolytic enzymes of Lactococcus lactis. J. Dairy Res. 60: 269-286

    Google Scholar 

  • Ven WJM van de, Roebroek AJM, van Duijnhoven HLP (1993) Structure and function of eukaryotic proprotein processing enzymes of the subtilisin family of serine proteases. Crit. Rev. Oncogenesis 4: 115-136

    Google Scholar 

  • Visser S, Exterkate FA, Slangen CJ & de Veer GJCM (1986) Comparative study of action of cell wall proteinase from various strains of Streptococcus cremoris on bovine α s1-, β-and κ-casein. Appl. Environ. Microbiol. 52: 1162-1166

    Google Scholar 

  • Vos P, Simons G, Siezen RJ & deVos WM (1989a) Primary structure and organization of the gene for a prokaryotic cell envelope-located serine proteinase. J. Biol. Chem. 264: 13579-13585

    Google Scholar 

  • Vos P, van Asseldonk M, van Jeveren F, Siezen RJ, Simons G & deVos WM (1989b) A maturation protein is essential for the production of active forms of Lactococcus lactis SK11 serine proteinase located in or secreted from the cell envelope. J. Bacteriol. 171:2795-2802

    Google Scholar 

  • Vos P, Boerrigter IJ, Buist G, Haandrikman AJ, Nijhuis M, de Reuver MB, Siezen RJ, Venema G, de Vos WM & Kok J (1991) Engineering of the Lactococcus lactis serine proteinase by construction of hybrid enzymes. Protein Eng. 4: 479-484

    Google Scholar 

  • Wells JM, Chamberlain RLM, Schofield KM & Le Page RWF (1996) Lactic acid bacteria as vaccine delivery vehicles. Ant. Van Leeuwenhoek 70: 317-330

    Google Scholar 

  • Wexler DE, Chenoweth DE & Cleary PP (1985) Mechanism of action of group A streptococcal C5a inactivator. Proc.Natl. Acad. Sci. USA 82: 8144-8148

    Google Scholar 

  • Yother J & Briles DE (1992) Structural properties and evolutionary relationships of PspA, a surface protein of Streptococcus pneumoniae, as revealed by sequence analysis. J. Bacteriol. 174: 601-609

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siezen, R.J. Multi-domain, cell-envelope proteinases of lactic acid bacteria. Antonie Van Leeuwenhoek 76, 139–155 (1999). https://doi.org/10.1023/A:1002036906922

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002036906922

Navigation