Skip to main content
Log in

Molecular domestication – more than a sporadic episode in evolution

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Transposable elements are short but complex pieces of DNA or RNA containing a streamlined minimal-genome with the capacity for its selfish replication in a foreign genomic environment. Cis-regulatory sections within the elements orchestrate tempo and mode of TE expression. Proteins encoded by TEs mainly direct their own propagation within the genome by recruitment of host-encoded factors. On the other hand, TE-encoded proteins harbor a very attractive repertoire of functional abilities for a cell. These proteins mediate excision, replication and integration of defined DNA fragments. Furthermore, some of these proteins are able to manipulate important host factors by altering their original function. Thus, if the host genome succeeds in domesticating such TE-encoded proteins by taming their ‘anarchistic behavior,’ such an event can be considered as an important evolutionary innovation for its own benefit. In fact, the domestication of TE-derived cis-regulatory modules and protein coding sections took place repeatedly in the course of genome evolution. We will present prominent cases that impressively demonstrate the beneficial impact of TEs on host biology over evolutionary time. Furthermore, we will propose that molecular domestication might be considered as a resumption of the same evolutionary process that drove the transition from ‘primitive genomes’ to ‘modern’ ones at the early dawn of life, that is, the adaptive integration of a short piece of autonomous DNA into a complex regulatory network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agrawal A., Q.M. Eastman & D.G. Schatz, 1998. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394: 744–751.

    Article  PubMed  CAS  Google Scholar 

  • Andrews, J.D. & G.B. Gloor, 1995. A role for the KP leucine zipper in regulating P element transposition in Drosophila. Genetics 141: 587–594.

    PubMed  CAS  Google Scholar 

  • Berg, D.E. & M.M. Howe, 1989. Mobile DNA, Am. Soc. Microbiol., Washington, DC.

    Google Scholar 

  • Best, S., P. Le Tissier, G. Towers & J.P. Stoye, 1996. Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 382: 826–829.

    Article  PubMed  CAS  Google Scholar 

  • Biessmann, H., A. Valgiersdottir, A. Lofsky, C. Chin, B. Ginther, R. Levis & M.P. Pardue, 1992. Het-A, a transposable element specifically involved in ‘healing’ broken chromosome ends in Drosophila. Mol. Cell. Biol. 12: 3910–3918.

    PubMed  CAS  Google Scholar 

  • Boeke. J.D., 1997. LINEs and Alus — the polyA connection. Nat. Genet. 16: 6–7.

    Article  PubMed  CAS  Google Scholar 

  • Britten, R., 1996. DNA sequence insertion and evolutionary variation in gene regulation. Proc. Natl. Acad. USA 93: 9374–9377.

    Article  CAS  Google Scholar 

  • Brosius, J., 1999. RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. Gene 238: 115–134.

    Article  PubMed  CAS  Google Scholar 

  • Clark, J.B. & M.G. Kidwell, 1997. A phylogenetic perspective of P transposable element evolution in Drosophila. Proc. Natl. Acad. Sci. USA 94: 11428–11433.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B., P. Sniegowski & W. Stephan, 1994. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371: 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Cordonnier A., J.F. Casella & T. Heidmann, 1995. Isolation of novel human endogenous retrovirus-like elements with foamy virus-related pol sequence. J. Virol. 69: 5890–5897.

    PubMed  CAS  Google Scholar 

  • Danilevskaya, O., A. Lofsky, E. Kurenova & M.L. Pardue, 1993. The Y chromosome of Drosophila melanogaster contains a distinctive subclass of Het-A-related repeats. Genetics 134: 531–543.

    PubMed  CAS  Google Scholar 

  • Doolittle, W.F. & C. Sapienza, 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601–603.

    Article  PubMed  CAS  Google Scholar 

  • Dorer, D. & S. Henikoff, 1994. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77: 993–1002.

    Article  PubMed  CAS  Google Scholar 

  • Dorer, D. & S. Henikoff, 1997. Transgene repeat arrays interact with distal heterochromatin and cause silencing in cis and trans. Genetics 147: 1181–1190.

    PubMed  CAS  Google Scholar 

  • Eickbush T., 1999. Telomerase and retrotransposons: which came first? Science 277: 911–912.

    Article  Google Scholar 

  • Engels, W.R., 1989. P-elements in Drosophila melanogaster, pp. 437–484, in Mobile DNA, edited by D.E. Berg, and M.M. Howe. American Society for Microbiology, Washington.

    Google Scholar 

  • Gloor, G.B., C.R. Preston, D.M. Johnson-Schlitz, N.A. Nassif, R.W. Phillis, W.K. Benz, H.M. Robertson & W.R. Engels, 1993. Type I repressors of P element mobility. Genetics 135: 81–95.

    PubMed  CAS  Google Scholar 

  • Hagemann, S., W.J. Miller & W. Pinsker, 1992. Identification of a complete P element in the genome of Drosophila bifasciata. Nucl. Acids Res. 20: 409–413.

    PubMed  CAS  Google Scholar 

  • Hagemann, S., W.J. Miller & W. Pinsker, 1994. Two distinct P element subfamilies in the genome of Drosophila bifasciata. Mol. Gen. Genet. 244: 168–175.

    Article  PubMed  CAS  Google Scholar 

  • Hagemann S., E. Haring & W. Pinsker, 1996. A new P element subfamily from Drosophila tristis, D. ambigua and D. obscura. Genome 39: 978–985.

    PubMed  CAS  Google Scholar 

  • Hagemann, S., W.J. Miller, E. Haring & W. Pinsker, 1998a. Nested insertions of short mobile sequences in Drosophila P elements. Chromosoma: 107: 6–16.

    Article  PubMed  CAS  Google Scholar 

  • Hagemann, S., E. Haring & W. Pinsker, 1998b. Horizontal transmission vs. vertical inheritance of P elements in Drosophila and Scaptomyza: Has the M-type subfamily spread from East Asia? J. Zool. Syst. Evol. Res. 36: 75–83.

    Article  Google Scholar 

  • Haring, E., S. Hagemann, P. Lankinen & W. Pinsker, 1998. The phylogenetic position of Drosophila eskoi deduced from P element and Adh sequence data. Hereditas 128: 235–244.

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S. & M.A. Matzke, 1997. Exploring and explaining epigenetic effects. Trends Genet. 13: 293–295.

    Article  PubMed  CAS  Google Scholar 

  • Hiom K., M. Melek & M. Gellert, 1998. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94: 463–470.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, S., M.P. Gassama & T. Heidmann, 1999. Taming of transposable elements by homolog-dependent gene silecing. Nat. Genet. 21: 209–212.

    Article  PubMed  CAS  Google Scholar 

  • Jurka, J., 1998. Repeats in genomic DNA: mining and meaning. Curr. Opin. Struct. Biol. 8: 333–337.

    Article  PubMed  CAS  Google Scholar 

  • Jurka, J. & V.V. Kapitonov, 1999. Sectorial mutagenesis by transposable elements. Genetica 107: 239–248.

    Article  PubMed  CAS  Google Scholar 

  • Ketting R.F., T.H. Haverkamp, H.G. van Luenen & R.H. Plasterk 1999. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99: 133–141.

    Article  PubMed  CAS  Google Scholar 

  • Kidwell, M.G., 1994. The evolutionary history of the P family of transposable elements. J. Hered. 85: 339–346.

    PubMed  CAS  Google Scholar 

  • Kidwell, M.G. & D. Lish, 1997. Transposable elements as source of variation in animals and plants. Proc. Natl. Acad. Sci. USA 94: 7704–7711.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C.C., Y.M. Mul & D.C. Rio, 1996. The Drosophila P-element KP repressor protein dimerizes and interacts with multiple sites on the P-element DNA. Mol. Cell. Biol. 16: 5616–5622.

    PubMed  CAS  Google Scholar 

  • Lee, C.C., E.L. Beall & D.C. Rio, 1998. DNA binding by the KP repressor protein inhibits P-element transposase activity in vitro. EMBO 17: 4166–4174.

    Article  CAS  Google Scholar 

  • Levis, R.W., R. Ganesan, K. Houtchens, L.A. Tolar & F. Sheen, 1993. Transposons in place of telomeric repeats at a Drosophila telomere. Cell, 75: 1083–1093.

    Article  PubMed  CAS  Google Scholar 

  • Lingner J., T.R. Hughes, A. Shevchenko, M. Mann, V. Lundblad & T.R. Cech, 1997. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276: 561–567.

    Article  PubMed  CAS  Google Scholar 

  • Long, Q., C. Bengra, C. Li, F. Kutlar & D. Tuan, 1998. A long terminal repeat of the human endogenous retrovirus ERV-9 is located in the 5′ boundary area of the human beta-globin locus control region. Genomics 54: 542–555.

    Article  PubMed  CAS  Google Scholar 

  • Mason, J.M. & H. Biessmann, 1995. The unusual telomeres of Drosophila. Trends Genet. 11: 58–62.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, J.F., 1993. Evolution and consequences of transposable elements. Curr. Opin. Genet. Dev. 3: 855–864.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, J.F., 1995. Transposable elements: possible catalysts of organismic evolution. Trends Ecol. Evol. 10: 123–126.

    Article  Google Scholar 

  • McDonald J.F., 1998. Transposable elements, gene silencing and macroevolution. Trends Ecol. Evol. 13: 94–95.

    Article  Google Scholar 

  • Miller, W.J., S. Hagemann, E. Reiter & W. Pinsker 1992. P homologous sequences are tandemly repeated in the genome of Drosophila guanche. Proc. Natl. Acad. Sci. USA 89: 4018–4022.

    Article  PubMed  CAS  Google Scholar 

  • Miller, W.J., N. Paricio, S. Hagemann, M.J. Martinez-Sebastián, W. Pinsker & R. DeFrutos, 1995. Structure and expression of the clustered P element homologues in Drosophila subobscura and D. guanche. Gene 156: 167–174.

    Article  PubMed  CAS  Google Scholar 

  • Miller, W.J., L. Kruckenhauser & W. Pinsker, 1996. The impact of TEs on genome evolution in animals and plants, pp. 21–35 in Transgenic organisms: Risk assessment of deliberate release edited by K. Wöhrmann and J. Tomiuk. Birkhäuser, Basel.

    Google Scholar 

  • Miller, W.J., J.F. McDonald & W. Pinsker, 1997. Molecular domestication of mobile elements. Genetica 100: 261–270.

    Article  PubMed  CAS  Google Scholar 

  • Misra, S. & D.C. Rio, 1990. Cytotype control of Drosophila P element transposition: the 66 kd protein is a repressor of transposase activity. Cell 62: 269–284.

    Article  PubMed  CAS  Google Scholar 

  • Misra, S., R.M. Buratowsky, T. Ohkawa & D.C. Rio, 1993. Cytotype control of Drosophila melanogaster P element transposition: genomic position determines maternal repression. Genetics 135: 785–800.

    PubMed  CAS  Google Scholar 

  • Nakayama J., M. Saito, H. Nakamura, A. Matsuura & F. Ishikawa, 1997. TLP1: a gene encoding a protein component of mammalian telomerase is a novel member of WD repeats family. Cell 88: 875–884.

    Article  PubMed  CAS  Google Scholar 

  • Nouaud, D. & D. Anxolabéhère, 1997. P element domestication: a stationary P element may encode a 66 kDa repressor-like protein in the Drosophila montium species subgroup. Mol.Biol.Evol. 14: 1132–1144.

    PubMed  CAS  Google Scholar 

  • Nouaud, D., B. Boeda, L. Levy & D. Anxolabéhère, 1999. A P element has induced intron formation in Drosophila. Mol. Biol. Evol. 16: 1503–1510.

    PubMed  CAS  Google Scholar 

  • O'Hare, K. & G.M. Rubin, 1983. Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 34: 25–35.

    Article  PubMed  Google Scholar 

  • O'Hare, K., A. Driver, S. McGrath & D.M. Johnson-Schlitz, 1992. Distribution and structure of cloned P elements from the Drosophila melanogaster P strain. Genet. Res. 60: 33–41.

    Article  PubMed  Google Scholar 

  • Orgel, L.E. & F.H.C. Crick, 1980. Selfish DNA: the ultimate parasite. Nature 284: 604–607.

    Article  PubMed  CAS  Google Scholar 

  • Pardue, M.L., O. Davilevskaya, K. Lowenhaupt, F. Slot & K.L Traverse, 1996. Drosophila telomeres: new views on chromosome evolution. Trends Genet. 12: 48–52.

    Article  PubMed  CAS  Google Scholar 

  • Pardue, M.L., O.N. Danilevskaya, K.L. Traverse & K. Lowenhaupt, 1997. Evolutionary links between telomeres and transposable elements. Genetica 100: 73–84.

    Article  PubMed  CAS  Google Scholar 

  • Paricio, N., M. Pérez-Alonso, M.J. Martínez-Sebastiá & R. de Frutos, 1991. P sequences of Drosophila subobscura lack exon 3 and may encode a 66 kd repressor-like protein. Nucl. Acids Res. 19: 6713–6718.

    PubMed  CAS  Google Scholar 

  • Paricio, N., W.J. Miller, W. Pinsker, S. Hagemann, R. deFrutos & M.J. Martinez-Sebastián, 1996. Structure and origin of the P element related gene cluster of Drosophila madeirensis. Genome 39: 823–829.

    PubMed  CAS  Google Scholar 

  • Pimpinelli S., M. Berloco, L. Fanti, P.S. Bonaccorsi, E. Marchetti, R. Caizzi, C. Caggese & M. Gatti, 1995. Transposable elements are stable structural components of the Drosophila melanogaster heterochromatin. Proc. Natl. Acad. Sci. USA 92: 3804–3808.

    Article  PubMed  CAS  Google Scholar 

  • Pinsker, W., W.J. Miller & S. Hagemann, 1993. P-elements of Drosophila: Genomic parasites as genetic tools, pp. 25–42 in Transgenic organisms: Risk assessment of deliberate release, edited by K. Wöhrmann and J. Tomiuk. Birkhäuser, Basel.

    Google Scholar 

  • Rio, D.C., 1990. Molecular mechanisms regulating Drosophila P element transposition. Annu. Rev. Genet. 24: 543–578.

    Article  PubMed  CAS  Google Scholar 

  • Russo, C.A., N. Takezaki & M. Nei, 1995. Molecular phylogeny and divergence times of Drosophilia species. Mol. Biol. Evol. 12: 391–404.

    PubMed  CAS  Google Scholar 

  • SanMiguel P., A. Tikhonov, Y.K Jin, N. Motchoulskaia, D. Zakharov, A. Melake-Berhan, P.S. Springer, K.J. Edwards, M. Lee, Z. Avramova & J.L. Bennetzen, 1996. Nested retrotransposons in the intergenic region of the maize genome. Science 274: 765–768.

    Article  PubMed  CAS  Google Scholar 

  • Selker, E.U., 1997. Epigenetic phenomena in filamentous fungi: useful paradigm or repeat-induced confusion. Trends Genet. 13: 296–301.

    Article  PubMed  CAS  Google Scholar 

  • Sheen, F. & R.W. Levis, 1994. Transposition of the LINE-like retrotransposon TART to Drosophila chromosome termini. Proc. Natl. Acad. Sci. USA 91: 12510–12514.

    Article  PubMed  CAS  Google Scholar 

  • Simonelig, M. & D. Anxolabéhère, 1991. A P element of Scaptomyza pallida is active in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 88: 6102–6106.

    Article  PubMed  CAS  Google Scholar 

  • Simonelig, M. & D. Anxolabéhère, 1994. P-elements are old components of the Scaptomyza pallida genome. J. Mol. Evol. 38: 232–240.

    Article  CAS  Google Scholar 

  • Smit, A.F.A., 1996. The origin of interspersed repeats in the human genome. Curr. Opin. Genet. Dev. 6: 743–748.

    Article  PubMed  CAS  Google Scholar 

  • Swofford, D., 1990. PAUP: phylogenic analysis using parsimony Version 4.0. Illinois Natural History Survey, Champaign.

    Google Scholar 

  • Tabara H., M. Sarkissian, W.G. Kelly, J. Fleenor, A. Grishok, L. Timmons, A. Fire & C.C. Mello, 1999. The rde-1 gene, RNA interference and transposon silencing in C. elegans. Cell 99: 123–132.

    Article  PubMed  CAS  Google Scholar 

  • Traverse, K.L. & M.L. Pardue, 1988. A spontaneously open ring chromosome of Drosophila melanogaster has acquired He-T DNA at both new telomeres. Proc. Natl. Acad.Sci. USA. 85: 8116–8120.

    Article  PubMed  CAS  Google Scholar 

  • Wolffe A.P. & M.A. Matzke, 1999. Epigenetics: regulation through repression. Science 286: 481–486.

    Article  PubMed  CAS  Google Scholar 

  • Witherspoon, D.J., 1999. Selective constraints on P element evolution. Mol. Biol. Evol. 16: 472–478.

    PubMed  CAS  Google Scholar 

  • Yoder, J., C. Walsh & T. Bestor, 1997. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13: 335–340.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, W.J., McDonald, J.F., Nouaud, D. et al. Molecular domestication – more than a sporadic episode in evolution. Genetica 107, 197–207 (1999). https://doi.org/10.1023/A:1004070603792

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004070603792

Navigation