Skip to main content
Log in

Trends in rhizobial inoculant production and use

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Rhizobia inoculants have contributed to increase N2 fixation and yield in legumes crops. However, most of the inoculants produced world-wide are of poor or suboptimal quality. We discuss here why some of them are poor products and how to improve their quality and efficacy. Reported data on the inoculation rate effect can be used to design good inoculants. Technologies are now available to produce inoculants with a shelf-life of more than 1 year. Available quality control methods can help to improve the quality of inoculants although they do not take into account the physiological satus of the rhizobia. Unfortunately quality control is not commonly used except in major inoculant companies and the quality of inoculants sold on the market is low. The need for an increase in quality standards is discussed especially for the number of rhizobia delivered per seed and for the presence of contaminants. Some new technologies which able to increase efficacy and reliability of inoculation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amarger N 1980 Aspect microbiologique de la culture des légumineuses. Le Selectionneur Francais 28, 61–66.

    Google Scholar 

  • Anonymous 1994, 1995, 1996, 1997 Canadian legume inoculant and preinoculated seed testing report. Food Production and Inspection Branch, Feed and fertilisers Division, Government of Canada, Ottawa.

  • Asakawa S and Watanabe K 1993 Application of the first-order reaction (FOR) model to nodulation by Bradyrhizobium japonicum in the nodulation-dilution frequency method and estimation of time of initiation of nodulation. Soil Sci. Plant Nutr. 39, 733–736.

    Google Scholar 

  • Azpilicueta C, Gomez M, Sagardoy M, Revellin C and Catroux G 1996 Contaminantes bacterianos en inoculantes comerciales para soja (Glycine max. L. Merril). In XVIII Reunion Latinoamericana de Rhizobiologia, 1996, Santa Cruz de la Sierra, Bolivia. Eds. J Pijnenborg, D Ruiz and W Siles. pp 443–444. Asociacion Latinoamericana de Rhizobiologia (ALAR).

  • Bosworth A H, Williams M K, Albrecht K A, Kwiatkowski R, Beynon J, Hankinson T R, Ronson C W, Cannon F, Wacek T J and Triplett E W 1994 Alfalfa yield response to inoculation with recombinant strains of Rhizobium meliloti with an extra copy of dctabd and/or modified Nifa expression. Applied Environ. Microbiol. 60, 3815–3832.

    Google Scholar 

  • Brockwell J and Bottomley P J 1995 Recent advances in inoculant technology and prospects for the future. Soil Biol. Biochem. 27, 683–697.

    Google Scholar 

  • Brockwell J, Herridge D F, Morthorpe L J and Roughley R J 1988 Numerical effects of Rhizobium population on legume symbiosis. In Nitrogen Fixation by Legumes in Mediterranean Agriculture. Eds. D P Beck and L A Materon. pp 179–193.

  • Catroux G 1991. Inoculant quality standards and controls in France. In Expert Consultation on Legume Inoculant Production and Quality Control. Ed. V A Thompson. Roma 19-21 March 1991. pp 113–120. FAO, Roma, Italy.

    Google Scholar 

  • Catroux G, Revellin C, Hartmann, A 1996 Practical aspects of legume inoculation: inoculant quality and inoculation efficacy. Consequences for the soil microflora. In Seminario microorgansmos utiles para la agricultura y la forestacion Acts 1996 mayo 10–22 La Pampa. Eds. Laich F, Gonzales N and Echeverria H. pp 108–125. INTA/CERBAS, Balcarce, Argentina.

    Google Scholar 

  • Chandra R and Pareek R P 1987 Effect of inoculum rate on the performance of chickpea (Cicer arietinum L.) Rhizobium strains in the field. Biol. Fertil. Soils 5, 83–87.

    Google Scholar 

  • Date R A and Roughley R J 1977 Preparation of legume inoculants. In A Treatise on Dinitrogen Fixation. Eds. R W F Hardy and A H Gibson. pp 243–276. John Wiley and Sons, Chichester, UK.

    Google Scholar 

  • Diaper J P and Edwards C 1994 Flow cytometric detection of viable bacteria in compost. FEMS Microbiol. Ecol. 14, 213–220.

    Google Scholar 

  • EPA 1999 Rhizobium inoculants; proposed exemption from the requirement of a tolerance. EPA United States Environmental Protection Agency. Federal Register Document 64, 27223–27226.

  • Gomez M, Revellin C, Hartmann A and Catroux G 1995 Improved enumeration of Bradyrhizobium japonicum in commercial soybean inoculants using selective media. Lett. Apl. Microbiol. 21, 142–145

    Google Scholar 

  • Gomez M, Silva N, Hartmann A, Sagardoy AM and Catroux G 1997 Evaluation of commercial soybean inoculants from Argentina. World J. Microbiol. Biotech. 13, 167–173.

    Google Scholar 

  • Fouilleux G, Revellin C, Hartmann A and Catroux G 1996 Increase of Bradyrhizobium japonicum numbers in soils and enhanced nodulation of soybean (Glycine max (L) Merr) using granular inoculants amended with nutrients. FEMS Microbiol. Ecol. 20, 173–183.

    Google Scholar 

  • Hartmann A, Gomez M, Giraud J J and Revellin C 1996. Repeated sequence RS_ is diagnostic for Bradyrhizobium japonicum and Bradyrhizobium elkanii. Biol Fertil Soils 23: 15–19.

    Google Scholar 

  • Hattori T 1982 Analysis of plate count data of bacteria in natural environments. J. Gen. Appl. Microbiol. 28, 13–22.

    Google Scholar 

  • Hattori T 1985 Kinetics of colony formation of bacteria: an approach to the basis of the plate count method. The Reports of Institute for Agricultural Research Tohoku University 34, 1–36.

    Google Scholar 

  • Hebb D M, Richardson A E, Reid R and Brockwell J 1998 PCR as an ecological tool to determine the establishment and persistence of Rhizobium strains introduced into the field as seed inoculant. Aust. J. Agric. Res. 49, 923–934.

    Google Scholar 

  • Hume D J and Blair D H 1992 Effect of numbers of Bradyrhizobium japonicum applied in commercial inoculants on soybean seed yield in Ontario. Can. J. Microbiol. 38, 588–593.

    Google Scholar 

  • Hynes R K, Craig K A, Covert D, Smith R S and Rennie R J 1995 Liquid rhizobial inoculants for lentil and field pea. J. Prod. Agric. 8, 547–552.

    Google Scholar 

  • Jardim-Freire J R 1985 Legume inoculant quality control. In Proceedings of the Workshop on Rhizobium-Legumes Inoculants. Eds. J R Jardim Freire and de C P Bardos Farcao. pp 139–144. Universidade Federal do Rio Grande, Brazil.

    Google Scholar 

  • Jepras R I, Carter J, Pearson S C, Paul F E and Wilkinson MJ 1995. Development of a robust flow cytometric assay for determining numbers of viable bacteria. Appl. Environ. Microbiol. 61, 2696–2701.

    Google Scholar 

  • Kaprelyants A S and Kell D B 1992 Rapid assessment of bacterial viability and vitality by rhodamine 123 and flow cytometry. J. Appl. Bacteriol. 72, 410–422.

    Google Scholar 

  • Laguerre G, Allard M R, Revoy F and Amarger N 1994 Rapid identification of Rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl. Environ. Microbiol. 60, 56–63.

    Google Scholar 

  • Laguerre G, Mavingui P, Allard M R, Charnay M P, Louvrier P, Mazurier S I, Rigottier-Gois, L Amarger N 1996 Typing of Rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Appl. Environ. Microbiol. 62, 2029–2036.

    Google Scholar 

  • Lemos E G M and Carareto-Alves L M 1998 Resazurin reducing time as an indicator of Bradyrhizobium viable cell count. World J. Microbiol. Biotech. 14, 139–141.

    Google Scholar 

  • Maier R J and Triplett E W 1996 Toward more productive, efficient and competitive nitrogen-fixing symbiotic bacteria. Crit. Rev. Plant Sci. 15, 191–234.

    Google Scholar 

  • Menyah M K and Sato K 1996 A proposal for re-evaluating the most probable number procedure for estimating numbers of Bradyrhizobium spp. Biol. Fertil. Soils 23, 110–112.

    Google Scholar 

  • Nazih N and Weaver R W 1994 Numbers of clover Rhizobia needed for crown nodulation and early growth of clover in soil. Biol. Fert. Soils 17, 121–124.

    Google Scholar 

  • Obaton M and Rollier M 1970 L'inoculation du soja: influence de la qualité de l'inoculum sur le rendement en grain et la richesse en proteine de la récolte. C.R. Acad. Agric. Fr. 1174–1189.

  • Olsen P E and Rice W A 1991 Use of monoclonal antibodies in a colony immunoblot analysis of viable Rhizobium cell numbers in legume inoculants and on preinoculated seed. Can. J. Microbiol. 37, 430–432.

    Google Scholar 

  • Olsen P E and Rice WA 1996 Rapid evaluation of peat-base legume inoculant using immunomagnetic beads for cell retrieval and fluorescent nucleic acid probes for viability analysis. Plant Soil 186, 75–79.

    Google Scholar 

  • Olsen P E, Sande ES, Keyser HH, Singleton PW and Rice WA 1988 A very rapid enzyme immunoassay for confirmation of rhizobial identity and estimation of cell numbers in fresh broth culture. Can. J. Microbiol. 44, 382–385.

    Google Scholar 

  • Olsen P E, Rice W A, Bordeleau L M and Biederbeck V O 1994 Analysis and regulation of legume inoculants in Canada: the need for an increase in standards. Plant Soil 161, 127–134.

    Google Scholar 

  • Olsen P E, Rice W A, Bordeleau L M, Demidoff A H and Collins M M 1996 Levels and identities of nonrhizobial microorganisms found in commercial legume inoculant made with nonsterile neat carrier. Can. J. Microbiol. 42, 72–75.

    Google Scholar 

  • Patrick H N and Lowther W L 1995 Influence of the number of rhizobia on the nodulation and establishment of Trifolium ambiguum. Soil Biol. Biochem. 27, 717–720.

    Google Scholar 

  • Philpotts H 1979 Rhizobium strains and inoculation rate for direct drilled lupins. J. Aust. Inst. Agric. Sci. 45, 251–253.

    Google Scholar 

  • Rennie R J and Hynes R K 1993 Scientific and legislative quality control of legume inoculants for lentil and field pea. J. Prod. Agric. 6, 569–574.

    Google Scholar 

  • Rodriguez G G, Phipps D, Ishiguro K and Ridgway H F 1992 Use of a fluorescent redox probe for direct vizualisation of actively respiring bacteria. Appl. Environ. Microbiol. 58, 1801–1808.

    Google Scholar 

  • Rodriguez-Navarro D N, Temprano F and Orive R 1991 Survival of Rhizobium sp (Hedysarum coronarium L.) on peat-based inoculants and inoculated seeds. Soil Biol. Biochem. 23, 375–379.

    Google Scholar 

  • Roughley R J 1988 Legume inoculants; their technology and application. In Nitrogen Fixation by Legumes in Mediterranean Agriculture. Eds. D P Beck and L A Materon. pp 259–269. Icarda.

  • Roughley R J, Gemell L G, Thompson J A and Brockwell J 1993 The number of Bradyrhizobium sp (lupinus) applied to seed and its effect on rhizosphere colonization, nodulation and yield of lupin. Soil Biol. Biochem. 25, 1453–1458.

    Google Scholar 

  • Singleton P, Thies J and Bohlool B B 1992 Useful models to predict response to legume inoculation. In Biological Nitrogen Fixation and Sustainability of Tropical Agriculture. Eds. K Mulongoy, M Gueye and D S C Spencer. pp 245–256. John Wiley and Sons, Chichester, UK.

    Google Scholar 

  • Smith R S 1992 Legume inoculant formulation and application. Can. J. Microbiol. 38, 485–492.

    Google Scholar 

  • Smith R S, Ellis M A and Smith R E 1981 Effect of Rhizobium japonicum inoculant rates on soybean nodulation in a tropical soil. Agron. J. 73, 505–508.

    Google Scholar 

  • Sparrow J R and Ham G E 1983 Survival of Rhizobium phaseoli in six carrier materials. Agron. J. 75, 181–184.

    Google Scholar 

  • Tas E, Saano A, Leinonen P and Lindstrom K 1995 Identification of Rhizobium spp in peat-based inoculants by DNA hybridization and PCR and its application in inoculant quality control. Appl. Environ. Microbiol. 61, 1822–1827.

    Google Scholar 

  • Thies J E, Singleton P W and Bohlool B B 1991a Influence of the size of indigenous rhizobial populations on establishment and symbiotic performance of introduced Rhizobia on field-grown legumes. Appl. Environ. Microbiol. 57, 19–28.

    Google Scholar 

  • Thies J E, Singleton P W and Bohlool B B 1991b Modeling symbiotic performance of introduced Rhizobia in the field by use of indices of indigenous population size and nitrogen status of the soil. Appl. Environ. Microbiol. 57, 29–37.

    Google Scholar 

  • Thompson J A 1991. Legume inoculant production and quality control. In Expert Consultation on Legume Inoculant Production and Quality Control. Ed. V A Thompson. Roma 19–21 March 1991. pp 113–120. FAO, Roma, Italy.

    Google Scholar 

  • Tong Z, and Sadowsky M J 1994 A selective medium for the isolation and quantification of Bradyrhizobium japonicum and Bradyrhizobium elkanii strains from soils and inoculants. Appl. Environ. Microbiol. 60, 581–586.

    Google Scholar 

  • Trevors J T 1984 Dehydrogenase activity in soil: a comparison between the INT and TTC assay. Soil Biol. Biochem. 16, 673–674.

    Google Scholar 

  • Vergneau J P, Bazin M, Grenet L, De Vergnes B, Bonhomme Y, Wadoux P and Catroux G 1994. Rhizofilm: un pelliculant pour l'inoculation de soja à la ferme. In Third International Conference on Plant Diseases, Bordeaux, 6–8 Dec. 1994. Ed. ANPP. pp 707–713. ANPP, Paris, France.

    Google Scholar 

  • Vincent J M 1970 A manual for the practical study of root nodule bacteria. International Biological Programme, Handbook 15. Burgess and Son, Berkshire, England.

    Google Scholar 

  • Wadoux P 1991. Inoculant production in industry using sterile carriers. In Expert Consultation on Legume Inoculant Production and Quality Control. Ed. V A Thompson. Roma 19–21 March 1991. pp 113–120. FAO, Roma, Italy.

    Google Scholar 

  • Weaver R W and Frederick L R 1972 Effect of inoculum size on nodulation of Glycine max (L.) Merril, variety Ford. Agron. J. 64, 597–599

    Google Scholar 

  • Williams S C, Hong Y, Danavall D C A, Howardjones M H, Gibson D, Frischer M E, and Verity P G 1998 Distinguishing between living and nonliving bacteria: evaluation of the vital stain propidium iodide and its combined use with molecular probes in aquatic samples. J. Microbiol. Methods 32, 225–236.

    Google Scholar 

  • Wilson D O and Trang K M 1980 Effects of storage temperature and enumeration method on Rhizobium spp. numbers in peat inoculants. Trop. Agric. 57, 233–238.

    Google Scholar 

  • Zhang, F. and D. L. Smith 1997 Application of genistein to inocula and soil to overcome low spring soil temperature inhibition of soybean nodulation and nitrogen fixation. Plant Soil 192, 141–151. Section editor: F.R. Minchin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard Catroux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catroux, G., Hartmann, A. & Revellin, C. Trends in rhizobial inoculant production and use. Plant and Soil 230, 21–30 (2001). https://doi.org/10.1023/A:1004777115628

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004777115628

Navigation