Skip to main content
Log in

Partial Molar Volumes of Ionic and Nonionic Organic Solutes in Water: A Simple Additivity Scheme Based on the Intrinsic Volume Approach

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Partial molar volumes at infinite dilution, \(\overline {V^0 } \), in water at 25°C for organicelectrolytes and nonelectrolytes are described through a simple additivity schemebased on the intrinsic volume approach. The contributions to \(\overline {V^0 } \) of hydrocarbongroups were determined from the “experimental” CH2 increment assuming thatall hydrocarbon portions have the same packing efficiency in aqueous solution.Twenty-two charged and 51 uncharged groups, are assigned a \(\overline {V^0 } \) contribution and the partial molar volumes of nearly 400 monofunctional organic solutes arereproduced with a root mean square of deviation of 0.9 cm3-mol−1. The differentvolumetric behavior of linear, branched, and cyclic molecules is discussed. Acomparison is made of uncharged (hydrocarbon and polar) with charged groups,as well as of groups with small molecules and ions. A relative estimate is givenof the volume effects (cavity formation, hydrophobic hydration, solvent shrinkage,H bonding, and electrostriction) involved in the interaction of hydrophobic andhydrophilic groups with water. Deviations from additivity for mono- andpolyfunctional solutes, including polyelectrolytes, are analyzed in terms of (1) extensionof the hydration cosphere of different polar centers: (2) intramolecular interactionsand their dependence on nature, number, and mutual distance of interactinggroups. The van der Waals volume V w is extensively used as molecular descriptor.Estimates of V w for both charged and uncharged groups are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. C. Jolicoeur and G. Lacroix, Can. J. Chem. 54, 624 (1976).

    Google Scholar 

  2. F. J. Millero, A. Lo Surdo, and C. Shin, J. Phys. Chem. 82, 784 (1978).

    Google Scholar 

  3. G. Perron and J. E. Desnoyers, Fluid Phase Equil. 2, 239 (1979).

    Google Scholar 

  4. R. Zana, J. Polymer Sci. 18, 121 (1980).

    Google Scholar 

  5. R. N. French and C. M. Criss, J. Solution Chem. 10, 713 (1981).

    Google Scholar 

  6. H. Hoiland and E. Vikingstad, Acta Chem. Scand. 30, 182 (1976).

    Google Scholar 

  7. V. Mollica and L. Lepori, Z. Phys. Chem. Neue Folge 135, 11 (1983).

    Google Scholar 

  8. C. M. Criss and R. H. Wood, J. Chem. Thermodyn. 28, 723 (1996).

    Google Scholar 

  9. J. F. Reading and G. R. Hedwig, J. Chem. Soc. Faraday Trans. 86, 3117 (1990).

    Google Scholar 

  10. A. W. Hakin, M. M. Duke, J. L. Marty, and K. E. Preuss, J. Chem. Soc. Faraday Trans. 90, 2027 (1994).

    Google Scholar 

  11. S. Cabani, P. Gianni, V. Mollica, and L. Lepori, J. Solution Chem. 10, 563 (1981).

    Google Scholar 

  12. P. Gianni and L. Lepori, J. Solution Chem. 25, 1 (1996).

    Google Scholar 

  13. E. J. King, J. Phys. Chem. 73, 1220 (1969).

    Google Scholar 

  14. S. Terasawa, H. Itsuki, and S. Arakawa, J. Phys. Chem. 79, 2345 (1975).

    Google Scholar 

  15. J. T. Edward and P. G. Farrell, Can. J. Chem. 53, 2965 (1975).

    Google Scholar 

  16. A. Bondi, J. Phys. Chem. 68, 441 (1964).

    Google Scholar 

  17. R. A. Pierotti, Chem. Rev. 76, 717 (1976).

    Google Scholar 

  18. A. Y. Meyer, J. Chem. Soc. Perkin Trans. II, p. 1161 (1985).

  19. M. L. Connolly, J. Amer. Chem. Soc. 107, 1118 (1985).

    Google Scholar 

  20. A. Gavezzotti, J. Amer. Chem. Soc. 105, 5220 (1983).

    Google Scholar 

  21. J. L. Pascual-Ahuir and E. Silla, J. Comput. Chem. 11, 1047 (1990).

    Google Scholar 

  22. E. Silla, I. Tunón, and J. L. Pascual-Ahuir, J. Comput. Chem. 12, 1077 (1991).

    Google Scholar 

  23. R. F. W. Bader, M. T. Carrol, J. R. Cheeseman, and C. Chang, J. Amer. Chem. Soc. 109, 7968 (1987).

    Google Scholar 

  24. F. J. Luque, S. R. Gadre, P. K. Bhadane, and M. Orozco, Chem. Phys. Lett. 232, 509 (1995).

    Google Scholar 

  25. J. T. Edward, J. Chem. Educ. 47, 261 (1970).

    Google Scholar 

  26. E. J. King, J. Phys. Chem. 74, 4590 (1970).

    Google Scholar 

  27. J. A. Pople and M. Gordon, J. Amer. Chem. Soc. 89, 4253 (1967).

    Google Scholar 

  28. L. E. Sutton, Tables of Interatomic Distances and Configuration in Molecules and Ions, (The Chemical Society, London, 1958; Supplement, 1965).

    Google Scholar 

  29. L. Pauling, The Nature of Chemical Bond, 3rd edn. (Cornell University Press, Ithaca, 1960).

    Google Scholar 

  30. Y. Yoshimura and M. Nakahara, Ber. Bunsenges. Phys. Chem. 89, 1004 (1985).

    Google Scholar 

  31. A. Bondi, “Physical Properties of Molecular Crystals, Liquids and Glasses,” (Wiley, New York. 1968), Table 8.4.

    Google Scholar 

  32. S. W. Benson, F. R. Cruickshank, D. M. Golden, G. R. Haugen, H. E. O'Neal, A. S. Rodgers, R. Shaw, and R. Walsh, Chem. Rev. 69, 279 (1969).

    Google Scholar 

  33. R. Zana and E. Yeager, J. Phys. Chem. 70, 954 (1966); R. Zana and E. Yeager, 71, 521 and 4241 (1967).

    Google Scholar 

  34. A. Inglese, F. Mavelli, R. De Lisi, and S. Milioto, J. Solution Chem. 26, 319 (1997).

    Google Scholar 

  35. B. E. Glueckauf, Trans. Faraday Soc. 16, 914 (1965).

    Google Scholar 

  36. J. T. Edward, P. G. Farrel, and F. Shahidi, J. Phys. Chem. 82, 2310 (1978).

    Google Scholar 

  37. Y. Yoshimura, J. Osugi, and M. Nakahara, Ber. Bunsenges. Phys. Chem. 89, 25 (1985).

    Google Scholar 

  38. N. Nishimura, T. Tanaka, and T. Motoyama, Can. J. Chem. 65, 2248 (1987).

    Google Scholar 

  39. O. Exner, Collect. Czech. Chem. Commun. 32, 1 (1967).

    Google Scholar 

  40. F. H. Stillinger, J. Solution Chem. 2, 141 (1972).

    Google Scholar 

  41. J. T. Edward, P. G. Farrel, and F. Shahidi, Can. J. Chem. 57, 2887 (1979).

    Google Scholar 

  42. J. Hine and P. K. Mookerjee, J. Org. Chem. 40, 292 (1975).

    Google Scholar 

  43. J. P. Guthrie, Can. J. Chem. 55, 292 (1977).

    Google Scholar 

  44. C. V. Krishnan and H. L. Friedman, in Solute–Solvent Interactions, Vol. 2, Chap. 9, J. F. Coetzee and C. D. Ritchie, eds. (Dekker, New York, 1976).

    Google Scholar 

  45. N. Nichols, R. Skold, C. Spink, J. Suurkuusk, and I. Wadso, J. Chem. Thermodyn. 8, 1081 (1976).

    Google Scholar 

  46. W. Zielenkievicz, O. V. Kulikov, and I. Kulis-Cwikla, J. Solution Chem. 22, 963 (1993).

    Google Scholar 

  47. G. Mann, Tetrahedron 23, 3375 (1967).

    Google Scholar 

  48. G. Mann, M. Mühlstädt, J. Braband, and E. Döhring, Tetrahedron 23, 3393 (1967).

    Google Scholar 

  49. F. Shahidi, P. G. Farrel, and J. T. Edward, J. Phys. Chem. 83, 419 (1979).

    Google Scholar 

  50. J. T. Edward, P. G. Farrel, and F. Shahidi, Can. J. Chem. 57, 2585 (1979).

    Google Scholar 

  51. F. A. Cotton and G. Wilkinson, “Advanced Inorganic Chemistry” 2nd edn, Chap. 13. (Wiley Interscience), New York, 1968).

    Google Scholar 

  52. R. Zana, J. Phys. Chem. 81, 1817 (1977).

    Google Scholar 

  53. F. J. Millero, in Water and Aqueous Solutions, R. H. Horne, ed., Chap. 13 (Wiley, New York, 1972).

    Google Scholar 

  54. S. Cabani, V. Mollica, L. Lepori, and S. T. Lobo, J. Phys. Chem. 81, 987 (1977).

    Google Scholar 

  55. F. Shahidi and P. G. Farrel, J. Solution Chem. 7, 549 (1978).

    Google Scholar 

  56. C. Tondre and R. Zana, J. Phys. Chem. 76, 3451 (1972).

    Google Scholar 

  57. L. Lepori and V. Mollica, J. Polymer Sci. A2 16, 1123 (1978).

    Google Scholar 

  58. J. C. Moore, R. Battino, T. R. Rettich, Y. P. Handa, and E. Wilhelm, J. Chem. Eng. Data 27, 22 (1982).

    Google Scholar 

  59. L. Hnedkovský, R. H. Wood, and V. Majer, J. Chem. Thermodyn. 28, 125 (1996).

    Google Scholar 

  60. E. W. Tiepel and K. E. Gubbins, J. Phys. Chem. 76, 3044 (1972).

    Google Scholar 

  61. I. R. Krichevsky, A. A. Illinskaya, Acta Physicochim. URSS 20, 327 (1945).

    Google Scholar 

  62. D. R. Biggerstaff and R. H. Wood, J. Phys. Chem. 92, 1988 (1988).

    Google Scholar 

  63. W. A Gerth, J. Solution Chem. 12, 655 (1983).

    Google Scholar 

  64. R. Kobayashi and D. L. Katz, Ind. Eng. Chem. 45, 440 (1953).

    Google Scholar 

  65. A. V. Sharygin, A. Inglese, J. Šedlbauer, and R. H. Wood, J. Solution Chem. 26, 183 (1997).

    Google Scholar 

  66. M. F. Easton, A. G. Mitchell, and W. F. K. Wynne-Jones, Trans. Faraday Soc. 48, 796 (1952).

    Google Scholar 

  67. L. Jannelli, M. Pansini, and R. Jalenti, J. Chem. Eng. Data 29, 266 (1983).

    Google Scholar 

  68. G. Caron, N. Gélinas, and J. Desnoyers, Can. J. Chem. 64, 1573 (1986)

    Google Scholar 

  69. J. E. Desnoyers, G. Caron, R. DeLisi, D. Roberts, A. Roux, and G. Perron, J. Phys. Chem. 87, 1397 (1983).

    Google Scholar 

  70. G. Perron, F. Yamashita, P. Martin, and J. E. Desnoyers, J. Colloid Interface Sci. 44, 222 (1991).

    Google Scholar 

  71. M. Sakurai, J. Solution Chem. 18, 37 (1989).

    Google Scholar 

  72. O. Sciacovelli, L. Jannelli, and A. Della Monica, Gazzetta 97, 1012 (1967).

    Google Scholar 

  73. J. A. Barbero, L. G. Hepler, K. G. McCurdy, and P. R. Tremaine, Can. J. Chem. 61, 2509 (1983).

    Google Scholar 

  74. G. K. Ward and F. J. Millero, J. Solution Chem. 3, 417 (1974).

    Google Scholar 

  75. J. W. Larson, K. G. Zeeb, and L. G. Hepler, Can. J. Chem. 60, 2141 (1982).

    Google Scholar 

  76. C. L. Liotta, E. M. Perdue, and H. P. Hopkins, Jr., J. Amer. Chem. Soc. 96, 7981 (1974).

    Google Scholar 

  77. J. Jose, R. Philippe, and P. Clechet, Can. J. Chem. Eng. 53, 88 (1975).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lepori, L., Gianni, P. Partial Molar Volumes of Ionic and Nonionic Organic Solutes in Water: A Simple Additivity Scheme Based on the Intrinsic Volume Approach. Journal of Solution Chemistry 29, 405–447 (2000). https://doi.org/10.1023/A:1005150616038

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005150616038

Navigation