Skip to main content
Log in

Effects of Allelochemicals from First (Brassicaceae) and Second (Myzus persicae and Brevicoryne brassicae) Trophic Levels on Adalia bipunctata

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Three Brassicaceae species, Brassica napus (low glucosinolate content), Brassica nigra (including sinigrin), and Sinapis alba (including sinalbin) were used as host plants for two aphid species: the generalist Myzus persicae and the specialist Brevicoryne brassicae. Each combination of aphid species and prey host plant was used to feed the polyphagous ladybird beetle, Adalia bipunctata. Experiments with Brassicaceae species including different amounts and kinds of glucosinolates (GLS) showed increased ladybird larval mortality at higher GLS concentrations. When reared on plants with higher GLS concentrations, the specialist aphid, B. brassicae, was found to be more toxic than M. persicae. Identification of GLS and related degradation products, mainly isothiocyanates (ITC), was investigated in the first two trophic levels, plant and aphid species, by high-performance liquid chromatography and gas chromatography–mass spectrometry, respectively. While only GLS were detected in M. persicae on each Brassicaceae species, high amounts of ITC were identified in B. brassicae samples (allyl-ITC and benzyl-ITC from B. nigra and S. alba, respectively) from all host plants. Biological effects of allelochemicals from plants on predators through aphid prey are discussed in relation to aphid species to emphasize the role of the crop plant in integrated pest management in terms of biological control efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • BARTLET, R. J., and MIKOLAJCZAK, K. L. 1989. Toxicity of compounds derived from Limnanthes albaseed to fall armyworm (Lepidoptera: Noctuidae) and European corn borer (Lepidoptera: Pyralidae) larvae. J. Econ. Entomol.82:1054-1060.

    Google Scholar 

  • BIRCH, A. N. E., GRIFFITHS, D. W., and MACFARLANE SMITH, W. H. 1990. Changes in forage and oilseed rape (Brassica napus). Root glucosinolates in response to attack by turnip root fly (Delia floralis). J. Sci. Food Agric.51:309-320.

    Google Scholar 

  • BLAU, P. A., FEENY, P., CONTARDO, L., and ROBSON, D. S. 1978. Allyl-glucosinolate and herbivorous caterpillars: A contrast in toxicity and tolerance. Science200:1296-1298.

    Google Scholar 

  • CARTER, M. C., and DIXON, A. F. G. 1984. Honeydew: An arrestant stimulus for coccinellids. Ecol. Entomol.9:383-387.

    Google Scholar 

  • DAGNELIE, P. 1973. Théories et méthodes statistiques, tome 2, Presses agronomiques, Gembloux, Belgium.

    Google Scholar 

  • DAWSON, G. W., DOUGHTY, K. J., HICK, A. J., PICKETT, J. A., PYE, B. J., SMART, L. E., and WADHAMS, L. J. 1993. Chemical precursors for studying the effects of glucosinolate catabolites on diseases and pests of oilseed rape (Brassica napus) or related plants. Pestic. Sci.39:271-278.

    Google Scholar 

  • DICKE, M., SABELIES, M. W., TAKABAYASHI, J., BRUIN, J., and POSTHUMUS, M. A. 1990. Plant strategies of manipulating predator-prey interactions through allelochemicals: Prospects for application in pest control. J. Chem. Ecol.16:3091-3118.

    Google Scholar 

  • ERICKSON, J. M., and FEENY, P. 1974. Sinigrin: A chemical barrier to the black swallowtail butterfly, Papilio polyxenes. Ecology55:103-111.

    Google Scholar 

  • FAO. 1995. Annuaire Commerce, Vol. 50. Statistics series no. 138.

  • FAO. 1997. Annuaire Production, Vol. 51. Statistics series no. 142.

  • FRAENKEL, G. S. 1959. The raison d'ê tre of secondary plant substances. Science129:1234-1237.

    Google Scholar 

  • FRANCIS, F. 1999a. Conséquences évolutives des relations entre le puceron et son prédateur en présence de substances allélochimiques chez les Brassicaceae, 5è me Conférence Internationale sur les Ravageurs en Agriculture, Annales ANPP, Tome II, pp. 503-510.

  • FRANCIS, F. 1999b. Effects des glucosinolates sur les interactions du modè le plante-puceron-coccinelle. DEA dissertation. Gembloux Agricultural University, Gembloux.

    Google Scholar 

  • FRANCIS, F., HAUBRUGE, E., and GASPAR, C. 1999. Effects of isothiocyanates on the glutathione S-transferases activity from Adalia bipunctataL. (Coleoptera: Coccinellidae). Med. Fac. Landbouw. Univ. Gent64(3a):297-303.

    Google Scholar 

  • GROB, K., and MATILE, P. 1979. Vacuolar location of glucosinolate in horseradish root cells. Plant Sci. Lett.14:327-335.

    Google Scholar 

  • HARBORNE, J. B. 1993. Introduction to Chemical Ecology, 4th ed. Academic Press, London.

    Google Scholar 

  • HEANEY, R. K., and FENWICK, G. R. 1995. Natural toxins and protective factors in Brassicaspecies, including rapeseed. Natural Toxins3:233-237.

    PubMed  Google Scholar 

  • HICKS, K. L. 1974. Mustard oil glucosinolates: feeding stimulants for adult cabbage flea beetles, Phyllotreta cruciferae(Coleoptera: Chrysomelidae). Ann. Entomol. Soc. Am.67:261-264.

    Google Scholar 

  • HODEK, I. 1959. The influence of aphid species as food for the ladybirds Coccinella 7-punctataL. and Adalia bipunctataL. InThe Ontogeny of Insects, Prague.

  • HODEK, I., and HONEK, A. 1996. Ecology of Coccinellidae, Kluwer Academic, The Netherlands.

    Google Scholar 

  • HOPKINS, R. J., EKBOM, B., and HENKOW, L. 1998. Glucosinolate content and susceptibility for insect attack of three populations of Sinapis alba. J. Chem. Ecol.24(7):1203-1216.

    Google Scholar 

  • ISAACS, R., HARDIE, J., HICK, A. J., PYE, B. J., SMART, L. E., WADHAMS, L. J., and WOODOCK, C. M. 1993. Behavioural responses of Aphis fabaeto isothiocyanates in the laboratory and field. Pestic. Sci.39:349-355.

    Google Scholar 

  • LAMB, R. J. 1989. Entomology of oilseed Brassica crops. Annu. Rev. Entomol.34:211-229.

    Google Scholar 

  • LEWIS, W. J., and MARTIN, W. R. 1990. Semiochemicals for use with parasitoids: Status and future. J. Chem. Ecol.90:415-421.

    Google Scholar 

  • MACGIBBON, D. B., and ALLISON, R. M. 1968. Glucosinolate system in the aphid Brevicoryne brassicae. N.Z. J. Sci.11:444-446.

    Google Scholar 

  • NAULT, L. R., and STAYER, W. E. 1972. Cited in J. A. Pickett, L. J. Wadhams, and Woodcock. 1992. The chemical ecology of aphids. Annu. Rev. Entomol.37:67-90.

    Google Scholar 

  • PICKETT, J. A., WADHAMS, L. J., and WOODCOCK, C. M. 1992. The chemical ecology of aphids. Annu. Rev. Entomol.37:67-90.

    Google Scholar 

  • PROKOPY, R. J., and OWENS, E. D. 1983. Visual detection of plants by herbivorous insects. Annu. Rev. Entomol.28:337-364.

    Google Scholar 

  • QUAGLIA, F., ROSSI, E., PETACCHI, R., and TAYLOR, C. E. 1993. Observations on an infestation by green peach aphids (Homoptera: Aphididae) on greenhouse tomatoes in Italy. J. Econ. Entomol.86(4):1019-1025.

    Google Scholar 

  • REED, D. W., PIVNICK, K. A., and UNDERHILL, E. W. 1989. Identification of oviposition stimulants for the diamondback moth, Plutella xylostella, present in three species of Brassicaceae. Entomol. Exp. Appl.53:277-286.

    Google Scholar 

  • REED, H. C., TAN, S. H., HAAPANEN, K., KILLMON, M., REED, D. K., and ELLIOT, N. C. 1995. Olfactory responses of the parasitoid Diaeretiella rapae(Hymenoptera: Aphidiidae) to odor plants, aphids and plant-aphid complexes. J. Chem. Ecol.21(4):407-415.

    Google Scholar 

  • SAULS, C. E., NORDLUND, D. A., and LEWIS, W. J. 1979. Kairomones and their use for management of entomophagous insects. VIII. Effect of diet on the kairomonal activity of frass from Heliothis zea(Boddie) larvae for Micropolitis croceipes(Cresson). J. Chem. Ecol.5:363-369.

    Google Scholar 

  • SCHOONHOVEN, L. M. 1981. Chemical mediators between plants and phytophagous insects, pp. 31-50, in D. A. Nordlund, R. L. Jones, and W. J. Lewis (eds.). Semiochemicals, Their Role in Pest Control, John Wiley & Sons, New York.

    Google Scholar 

  • TRAYNIER, R. M. M., and TRUSCOTT, R. J. W. 1991. Potent natural egg-laying stimulant for cabbage butterfly Pieris rapae. J. Chem. Ecol.17(7):1371-1379.

    Google Scholar 

  • TURLINGS, T. C. J., TUMLINSON, J. H., ELLER, F. J., and LEWIS, W. J. 1990. Exploitation of herbivore induced plant odors by host seeking parasitic wasps. Science250:1251-1253.

    Google Scholar 

  • VET, L. E. M., and DICKE, M. 1992. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol.37:141-172.

    Google Scholar 

  • WADLEIGH, R. W., and YU, S. J. 1988. Metabolism of an organothiocyanate allelochemical by glutathione transferase in three lepidopterous insects. J. Econ. Entomol.81(3):776-780.

    Google Scholar 

  • WEBER, G., OSWALD, S., and ZOLLNER, U. 1986. Suitability of rape cultivars with different glucosinolate content for Brevicoryne brassicae(L.) and Myzus persicae(Sultzer) (Hemiptera, Aphididae). J. Plant Dis. Prot.93:113-124.

    Google Scholar 

  • YU, S. J. 1984. Interactions of allelochemicals with detoxification enzymes of insect-susceptible and resistant armyworm. Pestic. Biochem. Physiol.22:60-68.

    Google Scholar 

  • YU, S. J., and HSU, E. L. 1993. Induction of detoxification enzymes in phytophagous insects: Roles of insecticide synergists, larval age and species. Arch Insect Biochem. Physiol.24:21-32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francis, F., Lognay, G., Wathelet, JP. et al. Effects of Allelochemicals from First (Brassicaceae) and Second (Myzus persicae and Brevicoryne brassicae) Trophic Levels on Adalia bipunctata. J Chem Ecol 27, 243–256 (2001). https://doi.org/10.1023/A:1005672220342

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005672220342

Navigation