Skip to main content
Log in

MR first pass imaging: quantitative assessment of transmural perfusion and collateral flow

  • Published:
The International Journal of Cardiac Imaging Aims and scope Submit manuscript

Abstract

Recent advances with fast switching gradient coils, and the optimization of magnetic resonance techniques for multi-slice imaging have made it possible to apply models of contrast agent transit for the quantification of myocardial perfusion, and determination of the transmural distribution of blood flow. This article summarizes some of these recent developments and presents examples of quantitative, multi-slice myocardial perfusion imaging studies in patients and animal models. Multi-slice, true first pass imaging, with high temporal resolution, and T1-weighted, arrhythmia insensitive contrast enhancement is used for the quantification of perfusion changes accompanying mild to severe ischemia. The first pass imaging technique and the modeling approach are sufficiently robust for fitting of tissue residue curves corresponding to a wide, physiologically realistic range of myocardial blood flows. In animals this was validated by comparison to blood flow measurements with radiolabeled microspheres as gold standard. It is demonstrated that with the proposed modeling approach one can determine the myocardial perfusion reserve from two consecutive MR first pass measurements under resting and hyperemic conditions. In patients with microvascular dysfunction the MR studies show for the first time that the myocardial perfusion reserve correlates with Doppler flow measurements (linear regression with slope of 1.02±0.09; r=0.80). Since perfusion limitations usually begin in the subendocardium as coronary flow is gradually reduced, first pass imaging with the prerequisitie spatial and temporal resolution allows early detection of a mild coronary stenosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wilson RF, Marcus ML, White CW. Prediction of the physiologic significance of coronary arterial lesions by quantitative lesion geometry in patients with limited coronary artery disease. Circulation 1987; 75(4): 723-32.

    Google Scholar 

  2. Schelbert HR, Wisenberg G, Phelps ME, Gould KL, Henze E, Hoffman EJ, Gomes A. Kuhl DE. Noninvasive assessment of coronary stenosis by myocardial imaging during pharmacologic coronary vasodilation. VI. Detection of coronary artery disease in man with intravenous N-13 ammonia and positron computed tomography. Am J Cardiol 1982; 49: 1197.

    Google Scholar 

  3. Sawada S, Muzik O, Beanlands RSB, Wolfe E, Hutchins GD, Schwaiger M. Interobserver and interstudy variability of myocardial blood flow and flow reserve measurements with nitrogen 13 ammonia-labeled positron emission tomography. Journal of Nuclear Cardiology 1995; 2: 413-22.

    Google Scholar 

  4. Araujo LI, Lammertsma AA, Rhodes CG, et al. Noninvasive quantification of regional myocardial blood flow in coronary artery disease with oxygen-15-labeled carbon dioxide inhalation and positron emission tomography. Circulation 1991; 83(3): 875-85.

    Google Scholar 

  5. Wilke N, Jerosch-Herold M, Stillman AE, et al. Concepts of myocardial perfusion imaging in magnetic resonance imaging. Magn Reson Quart 1994; 10(4): 249-286.

    Google Scholar 

  6. Pearlman JD, Hibberd MG, Chuang ML, Harada K, Lopez JJ, Gladstone SR, Friedman M, Sellke FW, Simons M. Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis [see comments]. CM Comment in: Nat Med 1995 Oct;1(10):996-7. Nature Medicine 1995; 1(10): 1085–9.

    Google Scholar 

  7. Mirhoseini M, Shelgikar S, Cayton MM. New concepts in revascularization of the myocardium. Annals of Thoracic Surgery 1988; 45(4): 415-20.

    Google Scholar 

  8. Gorge G, Schmidt T, Ito BR, Pantely GA, Schaper W. Microvascular and collateral adaptation in swine hearts following progressive coronary artery stenosis. Basic Research in Cardiology 1989; 84(5): 524-35.

    Google Scholar 

  9. Kroll K, Wilke N, Jerosch-Herold M, Wang Y, Zhang Y, Bache RJ, Bassingthwaighte JB. Accuracy of modeling of regional myocardial flows from residue functions of an intravascular indicator. Am. J. Physiol. 1996; 40: H1643-H1655.

    Google Scholar 

  10. Tsekos N, Zhang Y, Merkle H, Wilke N, Jerosch-Herold M, Stillman AE, Ugurbil K. Fast anatomical imaging of the heart and assessment of myocardial perfusion with arrythmia insensitive magnetization preparation. Magn Reson Med 1995; 34: 530-536.

    Google Scholar 

  11. Edelman RR, Li W. Contrast-enhanced echo-planar MR imaging of myocardial perfusion: preliminary study in humans. Radiology 1994; 190: 771-777.

    Google Scholar 

  12. Wilke N, Simm C, Zhang J, et al. Contrast-enhanced first pass myocardial perfusion imaging: correlation between myocardial blood flow in dogs at rest and during hyperemia. Magn Reson Med 1993; 29(4): 485-97.

    Google Scholar 

  13. Haase A, Matthaei D, Bartkowski R, Duehmke E, Leibfritz D. Inversion recovery snapshot FLASH MR imaging. J Computer Assisted Tomography 1989; 13(6): 1036-1040.

    Google Scholar 

  14. Wilke N, Kroll K, Merkle H, et al. Regional myocardial blood volume and flow: first pass MR imaging with Polylysine-Gadolinium-DTPA. JMRI 1995; 5(2): 227-237.

    Google Scholar 

  15. Haase A. Snapshot FLASH MRI: Application to T1, T2, and chemical shift imaging. Magn Reson Med 1990; 13: 77-89.

    Google Scholar 

  16. Jerosch-Herold M, Wilke N, Stillman AE, Kroll K, Ugurbil K. Multi-slice, functional perfusion maps derived from magnetic resonance first pass images — validation studies in dogs. American Heart Association, 68th Scientific Sessions, Anaheim, 1995

  17. Bassingthwaigthe JB, Raymond GR, Chan JIS. Principles of tracer kinetics. In: Zaret BL, Beller GA, ed. Nuclear Cardiology: State of the Art and Future Directions. St. Louis: Mosby-Year Book, 1993: 3-23.

    Google Scholar 

  18. Weisskoff RM, Chesler D, Boxerman JL, Rosen BR. Pitfalls in MR measurement of tissue blood flow with intravascular tracers: Which mean transit time? Mag Res Med 1993; 29: 553-559.

    Google Scholar 

  19. Clough AV, Al-Tinawi A, Linehan JH, Dawson C. Regional transit time estimation from image residue curves. Annals of Biomedical Engineering 1994; 22: 128-143.

    Google Scholar 

  20. Axel L. Tissue mean transit time from dynamic computed tomography by a simple deconvolution technique. Invest Radiol 1983; 18: 94-99.

    Google Scholar 

  21. Gould KL, Lipscomb K. Effects of coronary stenosis on coronary flow reserve and resistance. Am J Cardiol 1974; 34: 48-55.

    Google Scholar 

  22. Cusma JT, Toggart EJ, Folts JD, Peppler WW, Hangiandreou NJ, Lee C, Mistretta CA. Digital subtraction angiographic imaing of coronary flow reserve. Circulation 1987; 75(2): 461-472.

    Google Scholar 

  23. McGhie AI, Gould KL, Schelbert HR, Willerson JT. Nuclear Cardiology. In: Willerson JT, Cohn JN, ed. Cardiovascular Medicine. New York: Churchill Livingstone, 1995; 475-527.

    Google Scholar 

  24. Gould KL, Kirkeeide RL, Buchi M. Coronary flow reserve as a physiologic measure of stenosis severity. J Am Coll Cardiol 1990; 15(2): 459-74.

    Google Scholar 

  25. Beanlands RS, Muzik O, Melon P, Sutor R, Sawada S, Muller D, Bondie D, Hutchins GD, Schwaiger M. Noninvasive quantification of regional myocardial flow reserve in patients with coronary atherosclerosis using nitrogen-13 ammonia positron emission tomography. Determination of extent of altered vascular reactivity. J Am Coll Cardiol 1995; 26(6): 1465-75.

    Google Scholar 

  26. Jerosch-Herold M, Wilke N, Stillman AE, Muehler A, Wang Y. Functional myocardial perfusion maps from MR first pass images. Society of Magnetic Resonance, 3rd Annual Meeting, Nice, 1995; 459.

  27. Bassingthwaighte JB, Goresky CA. Modeling in the analysis of solute and water exchange in the microvasculature. In: Renkin EM, Michel CC, ed. Handbook of Physiology — The Cardiovascular System. Bethesda, MD: Am Physiol Soc, 1984: 549-626.

    Google Scholar 

  28. Yipintsoi T, Scanlon PD, Bassingthwaighte JB. Density and water content of dog ventricular myocardium. Proc Soc Exp Biol Med 1972; 141: 1032.

    Google Scholar 

  29. Burr DJ. A dynamic model for image registration. Comput. Graphics Image Processing 1981; 15: 102-112.

    Google Scholar 

  30. Moshfeghi M, Ranganath S, Nawyn K. Three-dimensional elastic matching of volumes. IEEE Transactions on Image Processing 1994; 3(2): 128-138.

    Google Scholar 

  31. Fleming RM, Kirkeeide RL, Smalling RW, Gould KL. Patterns in visual interpretation of coronary arteriograms as detected by quantitative coronary arteriography. J Am Coll Cardiol 1991; 18(4): 945-51.

    Google Scholar 

  32. Wilson RF, Laughlin DE, Ackell PH, Chilian WM, Holida MD, Hartley CJ, Armstrong ML, Marcus ML, White CW. Transluminal, subselective measurement of coronary artery blood flow velocity and vasodilator reserve in man. Circulation 1985; 72(1): 82-92.

    Google Scholar 

  33. Wilson RF, Wyche K, Christensen BV, Zimmer S, Laxson DD. Effects of adenosine on human coronary arterial circulation. Circulation 1990; 82(5): 1595-1606.

    Google Scholar 

  34. Geltman EM, Henes CG, Senneff MJ, Sobel BE, Bergmann SR. Increased myocardial perfusion at rest and diminished perfusion reserve in patients with angina and angiographically normal coronary arteries. J Am Coll Cardiol 1990; 16(3): 586-95.

    Google Scholar 

  35. Epstein SE, Cannon R 3.d. Site of increased resistance to coronary flow in patients with angina pectoris and normal epicardial coronary arteries. J Am Coll Cardiol 1986; 8(2)

  36. Manning WJ, Atkinson DJ, Grassman W, Paulin S, Edelman RR. First pass MR Imaging studies using gadolinium DTPA in patients with coronary artery disease. J Am Coll Cardiol 1991; 18: 959-965.

    Google Scholar 

  37. Wilke N, Engels A, Weikl A, al e. Dynamic perfusion studies by ultrafast MR Imaging: Initial clinical results from cardiology. Electromedica 1990; 58: 102.

    Google Scholar 

  38. Schaefer S, Tyen Rv, Saloner O. Evaluation of myocardial perfusion abnormalities with gadolinium-enhanced snapshot MR imaging in humans. Radiology 1992; 185: 795-801.

    Google Scholar 

  39. Eichenberger AC, Schuiki E, Kochli VD, Amann FW, McKinnon GC, Schulthess GKv. Ischemic heart disease: assessment with gadolinium-enhanced ultrafast MR imaging and dipyridamole stress. J Magn Reson Imag 1994; 4: 425-431.

    Google Scholar 

  40. Bache RJ, Schwartz JS. Effect of perfusion pressure distal to a coronary stenosis on transmural myocardial blood flow. Circulation 1982; 65(5): 928-935.

    Google Scholar 

  41. Canet E, Revel D, Sebbag L, de L M., Baldy C, Delabre C, Amiel M. Noninvasive assessment of no-reflow phenomenon in a canine model of reperfused infarction by contrast-enhanced magnetic resonance imaging. Am Heart J 1995; 130(5): 949-56.

    Google Scholar 

  42. Judd RM, Lugo-Olivieri CH, Arai M, Kondo T, Croisille P, Lima JA, Mohan V, Becker LC, Zerhouni EA. Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation 1995; 92(7): 1902-10.

    Google Scholar 

  43. Sheil MLK, Kaul S, Spotnitz WD. Myocardial contrast echocardiography: developments, applications, and future directions. Academic Radiology 1996; 3: 260-275.

    Google Scholar 

  44. Kaul S, Jayaweera AR, Glasheen WP, Villanueva FS, Gutgesell HP, Spotnitz WD. Myocardial contrast echocardiography and the transmural distribution of flow: a critical appraisal during myocardial ischemia not associated with infarction. J Am Coll Cardiol 1992; 20(4): 1005-16.

    Google Scholar 

  45. Sabia PJ, Powers ER, Jayaweera AR, Ragosta M, Kaul S. Functional significance of collateral blood flow in patients with recent acute myocardial infarction. A study using myocardial contrast echocardiography. Circulation 1992; 85(6): 2080-9.

    Google Scholar 

  46. Keller MW, Glasheen W, Smucker ML, Burwell LR, Watson DD, Kaul S. Myocardial contrast echocardiography in humans: Assessment coronary blood flow reserve. J Am Coll Cardiol 1988; 12(4): 925-934.

    Google Scholar 

  47. Larsson HBW, Fritzhansen T, Rostrup E, Sondergaard L, Ring P, Henriksen O. Myocardial perfusion modeling using MRI. Magn Reson Med 1996; 35(5): 716-726.

    Google Scholar 

  48. Tong CY, Prato FS, Wisenberg F, Lee TY, Carroll E, Sandler D, Wills J, Drost D. Measurement of the extraction efficiency and distribution volume for Gd-DTPA in normal and diseased canine myocardium. Magn Reson Med 1993; 30: 337-346.

    Google Scholar 

  49. Fritz-Hansen T, Larsson HBW, Rostrup E, Søndergaard L, Ring P, Henrikson O. Quantification of myocardial perfusion at rest and during dipyridamole infusion in humans. Society of Magnetic Resonance in Medicine, 3rd scientific meeting, Nice, France, 1995; 21.

  50. Fritz-Hansen T, Rostrup E, Larsson HBW. Comparison of qualitative and quantitative methods for evaluation of the myocardial perfusion reserve. International Society of Magnetic Resonance in Medicine, 4th scientific meeting, New York, 1996; 685.

  51. Lima JA, Judd RM, Bazille A, Schulman SP, Atalar E, Zerhouni EA. Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI. Potential mechanisms. Circulation 1995; 92(5): 1117-25.

    Google Scholar 

  52. Poncelet B, Weisskoff RM, Zervos G, Huggins G, Gewirtz H, Pasternack R, Brady TJ, Kantor H. EPI detection of changes in coronary flow velocity and myocardial tissue perfusion during hyperemia in patients with coronary artery disease. Society of Magnetic Resonance in Medicine, 3rd scientific meeting, Nice, France, 1995; 20.

  53. Li D, Dhawale P, Rubin PJ, Haacke EM, Gropler RJ. Myocardial signal response to dipyridamole and dobutamine: Demonstration of the BOLD effect using a double-echo gradient-echo sequence. Magn Reson Med 1996; 36: 16-20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jerosch-Herold, M., Wilke, N. MR first pass imaging: quantitative assessment of transmural perfusion and collateral flow. Int J Cardiovasc Imaging 13, 205–218 (1997). https://doi.org/10.1023/A:1005784820067

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005784820067

Navigation