Skip to main content
Log in

Issues in experimental design and endpoint analysis in the study of experimental cytotoxic agents in vivo in breast cancer and other models

  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Considerable effort has been placed into the identification of new antineoplastic agents to treat breast cancer and other malignant diseases. The basic approaches, in terms of model selection, endpoints, and data analysis, have changed in the previous few decades. This article deals with many of the issues associated with designing in vivo studies to investigate the activity of experimental and established compounds and their potential interactions. Endpoints for both in situ and excision assays are described, including approaches for determining cell kill, tumor growth delay, survival, and other estimates of activity. Suggestions for approaches that may limit the number of animals also are included, as are possible alternatives for death as an experimental endpoint. Other concerns, such routes for drug administration, drug dosage, and preliminary assessments of toxicity also are addressed. Statistical considerations are only briefly discussed, since these are addressed in detail in the accompanying article by Hanfelt (Hanfelt JJ, Breast Cancer Res Treat 46:279-302, 1997). The approaches suggested within this article are presented to draw attention to many of the key issues in experimental design and are not intended to exclude other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldie JH, Coldman AJ: A mathematical model for relating the drug sensitivity of tumors to the spontaneous mutation rate. Cancer Treat Rep 63:1727–1733, 1979

    PubMed  Google Scholar 

  2. Beatson GT: On the treatment of inoperable cases of carcinoma of the mamma: suggestions from a new method of treatment, with illustrative cases. Lancet ii:104–107, 1896

    Google Scholar 

  3. Cole MP, Jones CTA, Todd IDH: A new antioestrogenic agent in late breast cancer. An early clinical appraisal of ICI 46474. Br J Cancer 25:270–275, 1971

    PubMed  Google Scholar 

  4. Howell A, DeFriend DJ, Robertson JFR, Blamey RW, Anderson L, Anderson E, Sutcliffe FA, Walton P: Pharmacokinetics, pharmacological and anti-tumor effects of the specific anti-oestrogen ICI 182780 in women with advanced breast cancer. Br J Cancer 74:300–308, 1996

    PubMed  Google Scholar 

  5. Bonadonna G: Does chemotherapy fulfill its expectations in cancer treatment? Ann Oncol 1:11–21, 1990

    PubMed  Google Scholar 

  6. Boyd MR: Status of the NCI preclinical antitumor drug discovery screen. PPO Updates 3(10):1–12, 1989

    Google Scholar 

  7. Richardson VJ, Ford CHJ, Tsaltas G, Gallant ME: Doxorubicin-anti-carcinoembryonic antigen immunoconjugate activity in vitro. Eur J Cancer Clin Oncol 25:633–640, 1989

    Article  PubMed  Google Scholar 

  8. Griffin JD: Hemopoietins in oncology: factoring out myelosuppression. J Clin Oncol 7:151–155, 1989

    PubMed  Google Scholar 

  9. Skipper HE, Schabel FM, Wilcox WS: Experimental evaluation of potential anticancer agents. XII. On the criteria and kinetics associated with "curability" of experimental leukemia. Cancer Chemother Rep 35:1–111, 1964

    PubMed  Google Scholar 

  10. Wilcox WS: The last surviving cancer cell: the chances of killing it. Cancer Chemother Rep 50:541–542, 1966

    PubMed  Google Scholar 

  11. Norton L, Simon R: Tumour size, sensitivity to therapy, and design of treatment schedules. Cancer Treat Rep 61:1307–1317, 1977

    PubMed  Google Scholar 

  12. Green JA: After Goldie-Coldman — where now? Eur J Cancer Clin Oncol 25:913–916, 1989

    Article  PubMed  Google Scholar 

  13. Schabel FM: Concepts from systemic treatment of micrometastases. Cancer 35:15–24, 1975

    PubMed  Google Scholar 

  14. De Vita VT: The relationship between tumor mass and response to chemotherapy. Implications for surgical adjuvant treatment of cancer. Cancer 51:1209–1220, 1983

    PubMed  Google Scholar 

  15. Tannock IF: Principles of cell proliferation: cell kinetics. In: De Vita VT, Hellman S, Rosenberg SA (eds) Cancer: Principles and Practice of Oncology. J.B. Lippincott, Philadelphia, 1989, pp 3–13

    Google Scholar 

  16. Steel GG: Cell loss as a factor in the growth rate of human tumours. Eur J Cancer 3:381 1967

    PubMed  Google Scholar 

  17. Clarke R, Brünner N, Katzenellenbogen BS, Thompson EW, Norman MJ, Koppi C, Paik S, Lippman ME, Dickson RB: Progression from hormone dependent to hormone independent growth in MCF-7 human breast cancer cells. Proc Natl Acad Sci USA 86:3649–3653, 1989

    PubMed  Google Scholar 

  18. Brünner N, Boulay V, Fojo A, Freter C, Lippman ME, Clarke R: Acquisition of hormone-independent growth in MCF-7 cells is accompanied by increased expression of estrogen-regulated genes but without detectable DNA amplifications. Cancer Res 53:283–290, 1993

    PubMed  Google Scholar 

  19. Brünner N, Boysen B, Jirus S, Skaar TC, Holst-Hansen C, Lippman J, Frandsen T, Spang-Thomsen M, Fuqua SAW, Clarke R: MCF7/LCC9: an antiestrogen resistant MCF-7 variant where acquired resistance to the steroidal antiestrogen ICI 182,780 confers an early crossresistance to the non-steroidal antiestrogen tamoxifen. Cancer Res 57:3486–3483, 1997

    PubMed  Google Scholar 

  20. Harris JR, Hellman S: Natural history of breast cancer. In: Harris J, Lippman ME, Morrow M, Hellman S (eds) Diseases of the Breast. Lippincott-Raven, Philadelphia, 1996, pp 375–391

    Google Scholar 

  21. Leonessa F, Green D, Licht T, Wright A, Wingate-Legette K, Lippman J, Gottesman MM, Clarke R: MDA435/LCC6 and MDA435/LCC6MDR1: ascites models of human breast cancer. Br J Cancer 73:154–161, 1996

    PubMed  Google Scholar 

  22. De Vita VT: Principles of chemotherapy. In: De Vita VT, Hellman S, Rosenberg SA (eds) Cancer Principles and Practice of Oncology. J.B. Lippincott, Philadelphia, 1989, pp 276–300

    Google Scholar 

  23. Winograd B: New drug development. In: Boven E, Winograd B (eds) The Nude Mouse in Oncology Research. CRC Press, Boca Raton, 1991, pp 305–316

    Google Scholar 

  24. Inaba M, Kobayashi T, Tashiro T, Sakurai Y: Pharmacokinetic approach to rational therapeutic doses for human tumor-bearing nude mice. Gann 79:509–515, 1988

    PubMed  Google Scholar 

  25. Kubota T, Inoue S, Furukawa T, Ishibiki K, Kitajima M, Kawamura E, Hoffman RM: Similarity of serumtumor pharmacokinetics of antitumor agents in man and nude mice. Anticancer Res 13:1481–1484, 1993

    PubMed  Google Scholar 

  26. Braakhuis BJM, van Dongen GAMS: Limitations for treatment studies. In: Boven E, Winograd B (eds) The Nude Mouse in Oncology Research. CRC Press, Boca Raton, 1991, pp 291–303

    Google Scholar 

  27. Dodwell DJ, Gurney H, Thatcher N: Dose intensity in cancer chemotherapy. Br J Cancer 61:789–794, 1990

    PubMed  Google Scholar 

  28. Clarke R: Human breast cancer cell line xenografts as models of breast cancer: the immunobiologies of recipient mice and the characteristics of several tumorigenic cell lines. Breast Cancer Res Treat 39:69–86, 1996

    PubMed  Google Scholar 

  29. Clarke R, van den Berg HW, Kennedy DG, Murphy RF: Reduction of the antimetabolic and antiproliferative effects of methotrexate by 17β-estradiol in a human breast carcimoma cell line (MDA-MB-436). Eur J Cancer Clin Oncol 19:19–24, 1983

    Article  PubMed  Google Scholar 

  30. Clarke R, van den Berg HW, Kennedy DG, Murphy RF: Oestrogen receptor status and the response of human breast cancer cells to a combination of methotrexate and 17β-estradiol. Br J Cancer 51:365–369, 1985

    PubMed  Google Scholar 

  31. Antoniades K, Spector H: Quantitative estrogen receptor values and growth of carcinoma of the breast before surgical intervention. Cancer 50:793–796, 1982

    PubMed  Google Scholar 

  32. Gabrilove JL, Jakubowski A, Scher H, Sternberg C, Wong G, Grous J, Yagoda A, Fain K, Moore MA, Clarkson B, et al: Effect of granulocyte colony-stimulating factor on neutropenia and associated morbidity due to chemotherapy for transitional-cell carcinoma of the urothelium. N Engl J Med 318:1414–1422, 1988

    PubMed  Google Scholar 

  33. Goldman CA, Skinnider LF, Maksymiuk AW: Interferon instillation for malignant pleural effusions. Ann Oncol 4:141–145, 1993

    PubMed  Google Scholar 

  34. Henderson IC, Shapiro CL: Adjuvant chemotherapy: an overview. In: Powles T, Smith IE (eds) Medical Management of Breast Cancer. Dunitz, London, 1991, pp 197–215

    Google Scholar 

  35. Henderson IC: Chemotherapy for metastatic disease. In: Harris JR, Hellman S, Henderson IC, Kinne DW (eds) Breast Diseases. J.B. Lippincott Co., Philadelphia, 1991, pp 604–665

    Google Scholar 

  36. Garewal HS: Mitomycin C in the chemotherapy of advanced breast cancer. Semin Oncol 15suppl 4:74–79, 1988

    PubMed  Google Scholar 

  37. Donehower RC, Rowinsky EK: Paclitaxel. PPO Updates 8(10):1–16, 1994

    Google Scholar 

  38. Trock BJ, Leonessa F, Clarke R: Multidrug resistance in breast cancer: a meta analysis of MDR1/gp170 expression and its possible functional significance. J Natl Cancer Inst 89:917–931, 1997

    Article  PubMed  Google Scholar 

  39. Vickers PJ, Dickson RB, Shoemaker R, Cowan KH: A multidrug-resistant MCF-7 human breast cancer cell line which exhibits cross-resistance to antiestrogens and hormone independent tumor growth. Mol Endocrinol 2:886–892, 1988

    PubMed  Google Scholar 

  40. Zyad A, Bernard J, Clarke R, Tursz T, Brockhaus M, Chouaib S: Human breast cancer cross-resistance to TNF and adriamycin: relationship to MDR1, MnSOD and TNF gene expression. Cancer Res 54:825–831, 1994

    PubMed  Google Scholar 

  41. Doroshow JH, Akman S, Esworthy S, Chu FF, Burke T: Doxorubicin resistance is conferred by selective enhancement of intracellular glutathione peroxidase or superoxide dismutase content in human MCF-7 breast cancer cells. Free Radic Res Commun 12–13 Pt 2:779–781, 1991

    Google Scholar 

  42. Iwamoto S, Takeda K: Possible cytotoxic mechanisms of TNF in vitro. Hum Cell 3:107–112, 1990

    PubMed  Google Scholar 

  43. Batist G, Tuple A, Sinha BK, Katki AG, Myers CE, Cowan KH: Overexpression of a novel anionic glutathione transferase in multidrug-resistant human breast cancer cells. J Biol Chem 261:15544–15549, 1986

    PubMed  Google Scholar 

  44. Sinha BK, Mimmaugh EG, Rajagopalan S, Myers CE: Adriamycin activation and oxygen free radical formation in human breast tumor cells: protective role of glutathione peroxidase in adriamycin resistance. Cancer Res 49:3844–3848, 1989

    PubMed  Google Scholar 

  45. Corbett TH, Valeriote FA, Baker LH: Is the P388 murine tumor no longer adequate as a drug discovery model? Invest New Drugs 5:3–20, 1987

    Article  PubMed  Google Scholar 

  46. Clarke R, Currier S, Kaplan O, Lovelace E, Boulay V, Gottesman MM, Dickson RB: Effect of P-glycoprotein expression on sensitivity to hormones in MCF-7 human breast cancer cells. J Natl Cancer Inst 84:1506–1512, 1992

    PubMed  Google Scholar 

  47. Nooter K, de la Riviere BG, Look NP, van Wingerden KE, Henzen-Logmans SC, Scheper RJ, Flens MJ, Klijn JGM, Stoter G, Foekens JA: The prognostic significance of expression of the multidrug resistance-associated protein (MRP) in primary breast cancer. Br J Cancer 76:486–493, 1997

    PubMed  Google Scholar 

  48. Clarke R, Brünner N, Thompson EW, Glanz P, Katz D, Dickson RB, Lippman ME: The inter-relationships between ovarian-independent growth, antiestrogen resistance and invasiveness in the malignant progression of human breast cancer. J Endocrinol 122:331–340, 1989

    PubMed  Google Scholar 

  49. Double JA, Bibby MC: Therapeutic index: a vital component in selection of anticancer agents for clinical trial. J Natl Cancer Inst 81:988–994, 1989

    PubMed  Google Scholar 

  50. Rosenhoff SH, Bull JM, Young RC: The effect of chemotherapy on the kinetics and proliferative capacity of normal and tumorous tissues in vivo. Blood 45:107–118, 1975

    PubMed  Google Scholar 

  51. Myers CE, Young RC, Chabner BA: Kinetic alterations by 5-fluorouracil in bone marrow, intestinal mucosa, and tumor. Cancer Res 36:1653–1658, 1976

    PubMed  Google Scholar 

  52. Kennedy DG, Clarke R, van den Berg HW, Murphy RF: The kinetics of methotrexate polyglutamate formation and efflux in a human breast cancer cell line (MDA-MB-436): the effect of insulin. Biochem Pharmacol 32:41–46, 1983

    Article  PubMed  Google Scholar 

  53. Shepherd R, Harrap KR: Modulation of the toxicity and antitumour activity of alkylating drugs by steroids. Br J Cancer 45:413–420, 1982

    PubMed  Google Scholar 

  54. Martin AD, Beer RW, Bosanquet AG, Gilby ED: The effect of alkylating agents and other drugs on the accumulation of melphalan by murine L1210 leukaemia cells in vitro. Biochem Pharmacol 31:2727–2732, 1982

    Article  PubMed  Google Scholar 

  55. Mizuno S, Ishida A: Potentiation of bleomycin cytotoxicity by membrane-interacting drugs and increased calcium ions. Biochem Biophys Res Commun 107:1021–1027, 1982

    PubMed  Google Scholar 

  56. Illiger HJ, Herdrich K: Drug interactions in the therapy of malignant diseases. Springer-Verlag, Munich, 1987

    Google Scholar 

  57. Ueda K, Clark DP, Chen CJ, Roninson IB, Gottesman MM, Pastan I: The human multidrug resistance (MDR1) gene. cDNA cloning and transcription initiation. J Biol Chem 262:505–508, 1987

    PubMed  Google Scholar 

  58. Horton JK, Thimmaiah KN, Houghton JA, Horowitz ME, Houghton PJ: Modulation by verapamil of vincristine pharmacokinetics and toxicity in mice bearing human tumor xenografts. Biochem Pharmacol 38:1727–1736, 1989

    Article  PubMed  Google Scholar 

  59. Pazdur R, Redman BG, Corbett TH, Phillips M, Barker LH: Phase I trial of spiromustine (NSC 172112) and evaluation of toxicity and schedule in a murine model. Cancer Res 47:4213–4217, 1987

    PubMed  Google Scholar 

  60. LoRusso P, Wozniak AJ, Polin L, Capps D, Leopold WR, Werbel LM, Biernat L, Dan ME, Corbett TH: Antitumor efficacy of PD115934 (NSC 366140) against solid tumors of mice. Cancer Res 50:4900–4905, 1990

    PubMed  Google Scholar 

  61. Corbett RJ, Leopold WR, Dykes DJ, Roberts BJ, Griswold DP, Schabel FM: Toxicity and anticancer activity of a new triazine antifolate (NSC 127755). Cancer Res 42:1707–1715, 1982

    PubMed  Google Scholar 

  62. Meyvisch C: Influence of implantation site on formation of metastases. Cancer Metastasis Rev 2:295–306, 1983

    PubMed  Google Scholar 

  63. Volpe JPG, Milas L: Influence of tumor transplantation methods on tumor growth rate amd metastatic potential of solitary tumors derived from metastases. Clin Exp Metastasis 8:381–389, 1990

    PubMed  Google Scholar 

  64. Morikawa K, Walker SM, Nakajima M, Pathak S, Jessup JM, Fidler IJ: Influence of organ environment on the growth, selection, and metastasis of human colon carcinoma cells in nude mice. Cancer Res 48:6863–6871, 1988

    PubMed  Google Scholar 

  65. Kozlowski JM, Fidler IJ, Campbell D, Xu Z-L, Kaighn ME, Hart IR: Metastatic behavior of human tumor cell lines grown in the nude mouse. Cancer Res 44:3522–3529, 1984

    PubMed  Google Scholar 

  66. Yamamoto S, Tanaka H, Kanamori T, Nobuhara M, Namba M: In vitro studies on potentiation of cytotoxic effects of anticancer drugs by interferon on a human neoplastic cell line (HeLa). Cancer Lett 20:131–138, 1983

    Article  PubMed  Google Scholar 

  67. Bissery M-C, Vrignaud P, Lavelle F: Preclinical profile of doxetaxel (Taxotere): efficacy as a single agent in combination. Semin Oncol 22:3–16, 1995

    Google Scholar 

  68. Hanfelt JJ: Statistical approachs to experimenal design and data analysis of in vivo studies. Breast Cancer Res Treat 46:279–302, 1997

    Article  PubMed  Google Scholar 

  69. Begg AC: Principles and practices of the tumor growth delay assay. In: Kallman RF (ed) Rodent Tumor Models in Experimental Cancer Therapy. Pergamon Press, New York, 1987, pp 114–121

    Google Scholar 

  70. Rygaard K, Spang-Thompsen M: Quantitation and gompertzian analysis of tumor growth. Breast Cancer Res Treat 46:303–312, 1997

    Article  PubMed  Google Scholar 

  71. Osieka R, Houchens DP, Goldin A, Johnson RK: Chemotherapy of human colon cancer xenografts in athymic nude mice. Cancer 40:2640–2650, 1977

    PubMed  Google Scholar 

  72. Manda T, Nishigaki F, Mukumoto S, Masuda K, Nakamura T, Shimomura K: The efficacy of combined treatment with recombinant human tumor necrosis factor-α and 5-fluorouracil is dependent on the development of capillaries in tumor. Eur J Cancer Clin Oncol 26:93–99, 1991

    Article  Google Scholar 

  73. Villa E, Dugani A, Fantoni E, Camellini L, Buttafoco P, Grottola A, Pompei G, De Santis M, Ferrari A, Manenti F: Type of estrogen receptor determines response to antiestrogen therapy. Cancer Res 56:3883–3885, 1996

    PubMed  Google Scholar 

  74. Jefferson MF, Pendelton N, Faragher EB, Dixon GR, Myskow MW, Horan MA: ‘Tumor volume’ as a predictor of survival after resection of non-small-cell lung cancer (NSCLC). Br J Cancer 74:456–459, 1996

    PubMed  Google Scholar 

  75. Clelland CA: Tumour volume. Br J Cancer 75:464–465, 1997

    Google Scholar 

  76. Binks S, Clelland CA, Layton C: A comparison of pathological methods of measuring lung cancer volume. J Clin Pathol 49:654–656, 1996

    PubMed  Google Scholar 

  77. Silbermann MH, van den Vecht B, Stoter G, Nooter K, Verweij J: Combination therapy of ACNU and ifosfamide in tumor bearing mice with M2661 breast cancer, B16 melanoma or C38 colon cancer. Eur J Cancer 26:321–325, 1990

    PubMed  Google Scholar 

  78. Namba M, Yamamoto S, Tanaka H, Kanamori T, Nobubara M, Kimoto T: In vitro and in vivo studies on potentiation of cytotoxic effects of anticancer drugs or cobalt 60 gamma ray by interferon on human neoplastic cells. Cancer 54:2262–2267, 1984

    PubMed  Google Scholar 

  79. Cox DR: Regression models and life tables (with discussion). J Royal Stat Soc B 34:187–220, 1972

    Google Scholar 

  80. Armitage P, Berry G: Statistical Methods in Medical Research. Blackwell Scientific Publications, Oxford, 1994, pp 484–489

    Google Scholar 

  81. Corbett TH, Valeriote FA: Rodent models in experimental chemotherapy. In: Kallman RF (ed) Rodent Tumor Models in Experimental Cancer Therapy. Pergamon Press, New York, 1987, pp 233–247

    Google Scholar 

  82. Hayflick L: Subculturing human diploid fibroblasts. In: Kruze PF, Patterson MK (eds) Tissue Culture: Methods and Applications. Academic Press, New York, 1973, pp 220–223

    Google Scholar 

  83. Steel GG, Courtney VD, Peckham MJ: The response of a variety of human tumour xenografts. Br J Cancer 47:1–13, 1983

    PubMed  Google Scholar 

  84. Berenbaum MC: What is synergy? Pharmacol Rev 41:93–141, 1989

    PubMed  Google Scholar 

  85. Rideout DC, Chou T-C: Synergism, antagonism, and potentiation in chemotherapy: an overview. In: Chou T-C, Rideout DC (eds) Synergism and Antagonism in Chemotherapy. Academic Press, San Diego, 1991, pp 3–53

    Google Scholar 

  86. Wampler GL, Carter WH, Campbell ED, Keefe PA: Relationships between various uses of antineoplastic drug-interaction terms. Cancer Chemother Pharmacol 31:111–117, 1992

    PubMed  Google Scholar 

  87. Machado SG, Robinson GA: A direct, general approach based on isobolograms for assessing the joint action of drugs in pre-clinical experiments. Stats Med 13:2289–2309, 1994

    Google Scholar 

  88. Berenbaum MC: Synergy, additivism and antagonism in immunosuppression. A critical review. Clin Exp Immunol 28:1–18, 1977

    PubMed  Google Scholar 

  89. Leonessa F, Jacobson M, Boyle B, Lippman J, McGarvey M, Clarke R: The effect of tamoxifen on the multidrug resistant phenotype in human breast cancer cells: isobologram, drug aecumulation and gp170 binding studies. Cancer Res 54:441–447, 1994

    PubMed  Google Scholar 

  90. Govindarajulu Z: Statistical Techniques in Bioassay. Karger, Basel, 1988, pp 1–162

    Google Scholar 

  91. Armitage P, Berry G: Statistical Methods in Medical Research. Blackwell Scientific Publications, Oxford, 1994, pp 392–424

    Google Scholar 

  92. Deen DF, Williams ME: Isobologram analysis of X-ray-BCNU interactions in vitro. Radiat Res 79:483–491, 1979

    PubMed  Google Scholar 

  93. Greco WR, Park HS, Rustum YM: Application of a new approach for the quantitation of drug synergism to the combination of cis-diamminedichloroplatinum and 1-β-D-arabinofuranosylcytosine. Cancer Res 50:5318–5327, 1990

    PubMed  Google Scholar 

  94. Aapro MS, Alberts DS, Salmon SE: Interactions of human leukocyte interferon with Vinca alkaloids and other chemotherapeutic agents against human tumors in clonogenic assay. Cancer Chemother Pharmacol 10:161–166, 1983

    Article  PubMed  Google Scholar 

  95. Marth C, Daxenbichler G, Dapunt O: Synergistic antiproliferative effect of human recombinant interferons and retinoic acid in cultured breast cancer cells. J Natl Cancer Inst 77:1197–1202, 1986

    PubMed  Google Scholar 

  96. Valeriote F, Lin H-S: Synergistic interactions of anticancer agents: a cellular perspective. Cancer Chemother Rep 59:895–901, 1975

    PubMed  Google Scholar 

  97. Corbett TH, Griswold DP, Wolpert MK, Vendetti JM, Schabel FM: Design and evaluation of combination chemotherapy trials in experimental animal tumor systems. Cancer Treat Rep 63:799–801, 1979

    PubMed  Google Scholar 

  98. Moulder JE, Rockwell S: Comparison of tumor assay methods. In: Kallman RF (eds) Rodent Tumor Models in Experimental Cancer Therapy. Pergamon Press, New York, 1987, pp 272–278

    Google Scholar 

  99. Heitjan DF, Manni A, Santen RJ: Statistical analysis of in vivo tumor growth experiments. Cancer Res 53:6042–6050, 1993

    PubMed  Google Scholar 

  100. Kaplan EL, Meter P: Non-parametric estimations from incomplete observations. J Am Stat Assoc 53:457–481, 1958

    Google Scholar 

  101. Mantell N: Evaluation of survival data and two new rank order stastistics arising in its consideration. Cancer Chemother Rep 50:163–170, 1966

    PubMed  Google Scholar 

  102. Duncan DB: Multiple range and multiple F tests. Biometrics 11:1–42, 1955

    Google Scholar 

  103. Dunnett CW: New tables for multiple comparisons with a control. Biometrics 20:482–492, 1964

    Google Scholar 

  104. Scheffe H: The analysis of variance. Wiley, New York, 1959

    Google Scholar 

  105. Gad S, Weil CS: Statistics and Experimental Design for Toxicologists. Telford Press, Caldwell NJ, 1988

    Google Scholar 

  106. Thompson EW, Paik S, Brünner N, Sommers C, Zugmaier G, Clarke R, Shima TB, Torri J, Donahue S, Lippman ME, Martin GR, Dickson RB: Association of increased basement membrane-invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol 150:534–544, 1992

    PubMed  Google Scholar 

  107. Soule HD, Vasquez J, Long A, Albert S, Brennan M: A human cell line from a pleural effusion derived from a human breast carcinoma. J Natl Cancer Inst 51:1409–1416, 1973

    PubMed  Google Scholar 

  108. Cailleau R, Young R, Olive M, Reeves WJ: Breast tumor cell lines from pleural effusions. J Natl Cancer Inst 53:661–674, 1974

    PubMed  Google Scholar 

  109. Price JE, Polyzos A, Zhang RD, Daniels LM: Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res 50:717–721, 1990

    PubMed  Google Scholar 

  110. Cailleau R, Olive M, Cruciger QVA: Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro 14:911–915, 1978

    PubMed  Google Scholar 

  111. Keydar I, Chen L, Karby S, Weiss FR, Delarca J, Radu M, Chaitcik S, Brenner HJ: Establishment and characterization of a cell line of human carcinoma origin. Eur J Cancer 15:659–670, 1979

    PubMed  Google Scholar 

  112. Clarke R, Leonessa F, Brunner N, Thompson EW: In vitro models of human breast cancer. In: Harris JR, Hellman S, Lippman ME, Morrow M (eds) Diseases of the Breast. J.B. Lippincott, Philadelphia, 1996, pp 245–261

    Google Scholar 

  113. Macubbin DL, Wing KR, Mace KF, Ho RLX, Ehrke MJ, Mihich E: Adriamycin-induced modulation of host defenses in tumor-bearing mice. Cancer Res 52:3572–3576, 1992

    PubMed  Google Scholar 

  114. Gorelik E, Ovejera A, Shoemaker R, Jarvis A, Alley M, Duff R, Mayo J, Herberman R, Boyd M: Microencapsulated tumor assay: new short term assay for in vivo evaluation of the effects of anticancer drugs on human tumor cell lines. Cancer Res 47:5739–5747, 1987

    PubMed  Google Scholar 

  115. Chandrasekaran B, Capizzi RL, Kute TE, Morgan T, Dimling J: Modulation of the metabolism and pharmacokinetics of 1-β-D-arabinofuranosylcytosine by 1-β-D-arabinofuranosyluracil in leukemic mice. Cancer Res 49:3259–3266, 1989

    PubMed  Google Scholar 

  116. Jiminez JJ, Yunis AA: Protection from 1 β D arabinofuranosylcytosine-induced alopecia by epidermal growth factor and fibroblast growth factor in the rat model. Cancer Res 52:413–415, 1992

    PubMed  Google Scholar 

  117. Nielsen LL, Gurnani M, Tyler RD: Evaluation of the wap-ras transgenic mouse as a model system for testing anticancer drugs. Cancer Res 52:3733–3738, 1992

    PubMed  Google Scholar 

  118. Spang-Thomsen M, Brünner N, Engelholm SA, Vindelov L: Estimation by flow cytometric DNA analysis of the effect of radiotherapy, hormone therapy and chemotherapy on human tumors grown in nude mice. In: Wu B, Zheng J (eds) Immune-Deficient Animals: 4th Workshop on Immune-Deficient Animals in Experimental Research, Karger, Basel, 1984, pp 409–415

    Google Scholar 

  119. Berger DP, Winterhalter BR, Fiebig HH: Conventional chemotherapy. In: Boven E, Winograd B (eds) The Nude Mouse in Onclogy Research. CRC Press, Boca Raton, 1991, pp 165–184

    Google Scholar 

  120. Miller BE, Machemer T, Lehotan M, Heppner GH: Tumor subpopulation interactions affecting melphalan sensitivity in palpable mouse mammary tumors. Cancer Res 51:4378–4387, 1991

    PubMed  Google Scholar 

  121. Kerpel-Fronius S, Verwey J, Stuurman M, Kanyar B, Lelieveld P, Pinedo HM: Pharmacokinetics and toxicity of mitomycin C in rodents, given alone, in combination, or after induction of microsomal metabolism. Cancer Chemother Pharmacol 22:104–108, 1988

    PubMed  Google Scholar 

  122. Imai R, Morimoto M, Marumo H, Kobayashi T, Tsuoro T, Inaba M, Tsukagoshi S, Sakurai Y: Antitumor activity of 7-N-(p-hydroxyphenyl)-mitomycin C in experimental tumor systems. Gann 72:944–949, 1981

    PubMed  Google Scholar 

  123. Los G, Mutsaers PHA, van der Vijgh WJF, Baldew GS, De Graaf PW, McVie JG: Direct diffusion of cis-diamminedichloroplatinum(II) in intraperitoneal rat tumors after intraperitoneal chemotherapy: a comparison with systemic chemotherapy. Cancer Res 49:3380–3384, 1989

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, R. Issues in experimental design and endpoint analysis in the study of experimental cytotoxic agents in vivo in breast cancer and other models. Breast Cancer Res Treat 46, 255–278 (1997). https://doi.org/10.1023/A:1005938428456

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005938428456

Navigation