Skip to main content
Log in

A mini binary vector series for plant transformation

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A streamlined mini binary vector was constructed that is less than 1/2 the size of the pBIN19 backbone (3.5 kb). This was accomplished by eliminating over 5 kb of non-T-DNA sequences from the pBIN19 vector. The vector still retains all the essential elements required for a binary vector. These include a RK2 replication origin, the nptIII gene conferring kanamycin resistance in bacteria, both the right and left T-DNA borders, and a multiple cloning site (MCS) in between the T-DNA borders to facilitate cloning. Due to the reduced size, more unique restriction sites are available in the MCS, thus allowing more versatile cloning. Since the traF region was not included, it is not possible to mobilize this binary vector into Agrobacterium by triparental mating. This problem can be easily resolved by direct transformation. The mini binary vector has been demonstrated to successfully transform Arabidopsis plants. Based on this mini binary vector, a series of binary vectors were constructed for plant transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • An, G., Watson, B., Stachel, S., Gordon, M.P. and Nester, E.W. 1985. New cloning vehicles for transformation of higher plants. EMBO J. 4: 277–284.

    Google Scholar 

  • An, G. 1986. Development of plant promoter expression vectors and their use for analysis of different activity of nopaline synthase promoter in transformed tobacco tissue. Plant Physiol 81: 86–91.

    Google Scholar 

  • Bechtold, N., Ellis, J. and Pelletier, G. 1993. In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C.R. Acad. Sci. Paris, Life Sci. 316: 1194–1199.

    Google Scholar 

  • Becker, D., Kemper, E., Schell, J. and Masterson, R. 1992. New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol. Biol. 20: 1195–1197.

    PubMed  Google Scholar 

  • Bent, A.F. and Clough, S.J. 1998. Agrobacterium germ-line transformation: transformation of Arabidopsis without tissue culture. In: S.B. Gelvin and R.A. Schilperoort (Eds.), PlantMolecular Biology Manual, 2nd ed. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. B7: 1–14.

    Google Scholar 

  • Bevan, M. 1984. Binary Agrobacterium vector for plant transformation. Nucl. Acids Res. 12: 8711–8721.

    PubMed  Google Scholar 

  • Boutry, M., Nagy, F., Poulsen, C., Aoyagi, K. and Chua, N.-H. 1987. Targeting of bacterial chloramphenicol acetyltransferase to mitochondria in transgenic plants. Nature 328: 340–342.

    Article  PubMed  Google Scholar 

  • Cangelosi, G.A., Best, E.A., Martinetti, G. and Nester, E.W. 1991. Genetic analysis of Agrobacterium. Meth. Enzymol. 204: 384–397.

    PubMed  Google Scholar 

  • Christensen, A.J. and Quail, P.H. 1996. Ubiquitin promoter-based vectors for high level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgen. Res. 5: 213–218.

    Google Scholar 

  • Frisch, D.A., Harris-Haller, L.W., Yokubaitis, N.T., Thomas, T.L., Hardin, S.H. and Hall, T.C. 1995. Complete sequence of the binary vector Bin 19. Plant Mol. Biol. 27: 405–409.

    PubMed  Google Scholar 

  • Gleave, A.P. 1992. A versatile binary vector system with a TDNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. PlantMol. Biol. 20: 1203–1207.

    Google Scholar 

  • Guerineau, F., Woolston, S., Brooks, L. and Mullineaux, P. 1988. An expression cassette for targeting foreign proteins into chloroplasts. Nucl. Acids Res. 16: 11380–11388.

    PubMed  Google Scholar 

  • Hajdukiewicz, P., Svab, P.Z. and Maliga, P. 1994. The pBZP family of Agrobacterium binary vectors. Plant Mol. Biol. 25: 989–994.

    PubMed  Google Scholar 

  • Haseloff, J., Siemering, K.R., Prasher, D.C. and Hodge, S. 1997. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci USA 94: 2122–2127.

    PubMed  Google Scholar 

  • Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J. and Schilperoort, R.A. 1983. A binary plant vector strategy based on separation of vir-and T-regions of the Agrobacterium tumefaciens Ti plasmid. Nature 303: 179–180.

    Google Scholar 

  • Holsters, M., deWaele, D., Depecker, A.D., Messens, E., VanMontagu, M. and Schell, J. 1987. Transfection and transformation of A. tumefaciens. Mol. Gen. Genet. 163: 181–187.

    Google Scholar 

  • Kempin, S.A., Liljegren, S.J., Block L.M., Rounsley, S.D., Yanofsky, M.F. and Lam, E. 1997. Targeted disruption in Arabidopsis. Nature 389: 802–803.

    PubMed  Google Scholar 

  • Klee, H.J., Yanofsky, M.F. and Nester, E.W. 1985. Vectors for transformation of higher plants. Bio/technology 3: 637–642.

    Article  Google Scholar 

  • Ma, H., Yanofsky, M.F., Klee, H.J., Bowman, J.L. and Meyerowitz, E.M. 1992. Vectors for plant transformation and cosmid libraries. Gene 117: 161–167.

    PubMed  Google Scholar 

  • Miao, Z.-H. and Lam, E. 1995. Targeted disruption of the TGA3 locus in Arabidopsis thaliana. Plant J. 7: 359–365.

    PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  • Schardl, C.L., Byrd, A.D., Benzion, G., Altschuler, M.A., Hildebrand, D.F. and Hunt, A.G. 1987. Design and construction of a versatile system for the expression of foreign genes in plants. Gene 61: 1–11.

    PubMed  Google Scholar 

  • Simoens, C., Alliotte, T., Mendel, R., Müller, A., Schiemann, J., Van Lijsebettens, M., Schell, J., Van Montagu, M. and Inzé, D. 1986. A binary vector for transferring genomic libraries to plants. Nucl. Acids Res. 14: 8073–8090.

    PubMed  Google Scholar 

  • Wang, K., Herrera-Estrella, L., Van Montagu, M. and Zambryski, P. 1984. Right 25 bp terminus sequence of the nopaline T-DNA is essential for and determines direction of DNA transfer from Agrobacterium to the plant genome. Cell 38: 455–462.

    Article  PubMed  Google Scholar 

  • Xiang, C., Miao, Z. and Lam, E. 1997. DNA-binding properties, genomic organization and expression pattern of TGA6, a new member of the TGA family of bZIP transcription factors in Arabidopsis thaliana. Plant Mol. Biol. 34: 403–415.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, C., Han, P., Lutziger, I. et al. A mini binary vector series for plant transformation. Plant Mol Biol 40, 711–717 (1999). https://doi.org/10.1023/A:1006201910593

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006201910593

Navigation