Skip to main content
Log in

CDK-related protein kinases in plants

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Cyclin-dependent kinases (CDK) form a conserved superfamily of eukaryotic serine-threonine protein kinases, which require binding to a cyclin protein for activity. CDK are involved in different aspects of cell biology and notably in cell cycle regulation. The comparison of nearly 50 plant CDK-related cDNAs with a selected set of their animal and yeast counterparts reveals five classes of these genes in plants. These are described here with respect to their phylogenetic, structural and functional properties. A plant-wide nomenclature of CDK-related genes is proposed, using a system similar to that of the plant cyclin genes. The most numerous class, CDKA, includes genes coding for CDK with the PSTAIRE canonical motif. CDKB makes up a class of plant-specific CDK divided into two groups: CDKB1 and CDKB2. CDKC, CDKD and CDKE form less numerous classes. The CDKD class includes the plant orthologues of metazoan CDK7, which correspond to the CDK-activating kinase (CAK). At present, no functional information is available in plants for CDKC and CDKE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andrews, B. and Measday, V. 1998. The cyclin family of budding yeast: abundant use of a good idea. Trends Genet. 14: 66–72.

    PubMed  Google Scholar 

  • Brotherton, D.H., Dhanaraj, V., Wick, S., Brizuela, L., Domaille, P.J., Volyanik, E., Xu, X., Parisini, E., Smith, B.O., Archer, S.J., Serrano, M., Brenner, S.L., Blundell, T.L. and Laue, E.D. 1998. Crystal structure of the complex of the cyclin D dependent kinase Cdk6 bound to the cell-cycle inhibitor p19(INK4d). Nature 395: 244–250.

    PubMed  Google Scholar 

  • Burssens, S., Van Montagu, M. and Inzé, D. 1998. The cell cycle in Arabidopsis. Plant Physiol. Biochem. 36: 9–19.

    Google Scholar 

  • Coenen, C. and Lomax, T.L. 1997. Auxin-cytokinin interactions in higher plants: old problems and new tools. Trends Plant Sci. 2: 351–356.

    Article  PubMed  Google Scholar 

  • Colasanti, J., Tyers, M. and Sundaresan, V. 1991. Identification and characterization of cDNA clones encoding a functional p34cdc2 homologue from Zea mays. Proc. Natl. Acad. Sci. USA 88: 3377–3381.

    PubMed  Google Scholar 

  • DeBondt, H.L., Rosenblatt, J., Jancarik, J., Jones, H.D., Morgan, D.O. and Kim, S.H. 1993. Crystal structure of cyclin-dependent kinase 2. Nature 363: 595–602.

    PubMed  Google Scholar 

  • Defalco, G. and Giordano, A. 1998. CDK9 (PITALRE): a multifunctional cdc2-related kinase. J. Cell Physiol. 177: 501–506.

    PubMed  Google Scholar 

  • Deveylder, L., Segers, G., Glab, N., Casteels, P., Van Montagu, M. and Inzé, D. 1997. The Arabidopsis Cks1At protein binds the cyclin-dependent kinases Cdc2aAt and Cdc2bAt. FEBS Lett. 412: 446–452.

    PubMed  Google Scholar 

  • Deveylder, L., Segers, G., Glab, N., Van Montagu, M. and Inzé, D. 1997. Identification of proteins interacting with the Arabidopsis Cdc2aAt protein. J. Exp. Bot. 48: 2113–2114.

    Google Scholar 

  • Ducommun, B., Brambilla, P., Felix, M. A., Franza, B., Karsenti, E. and Draetta, G. 1991. cdc2 phosphorylation is required for its interaction with cyclin. EMBO J. 10: 3311–3319.

    PubMed  Google Scholar 

  • Dudits, D., Magyar, Z., Deak, M., Meszaros, T., Miskolczi, P., Feher, A., Brown, S., Kondorosi, E., Athanasiadis, A., Pongor, S., Bako, L., Koncz, C. and Gyorgyey, J. 1998. Cyclin-dependent and calcium-dependent kinase families: response of cell division cycle to hormone and stress signals. In: D. Francis, D. Dudits and D. Inzé, (Eds.) Plant Cell Division, Portland Press, London/Miami, pp. 21–45.

    Google Scholar 

  • Dynlacht, B.D. 1997. Regulation of transcription by proteins that control the cell cycle. Nature 389: 149–152.

    PubMed  Google Scholar 

  • Espinoza, F.H., Farrell, A., Erdjument-Bromage, H., Tempst, P. and Morgan, D.O. 1996. A cyclin-dependent kinase-activating kinase (CAK) in budding yeast unrelated to vertebrate CAK. Science 273: 1714–1717.

    PubMed  Google Scholar 

  • Feiler, H. and Jacobs, T. 1991. Cloning of the pea cdc2 homologue by efficient immunological screening of PCR products. Plant Mol. Biol. 17: 321–333.

    PubMed  Google Scholar 

  • Ferreira, P.C.G., Hemerly, A.S., Villaroel, R., Van Montagu, M. and Inzé, D. 1991. The Arabidopsis functional homolog of the p34cdc2 protein kinase. Plant Cell 3: 531–540.

    PubMed  Google Scholar 

  • Fobert, P.R., Gaudin, V., Lunness, P., Coen, E.S. and Doonan, J.H. 1996. Distinct classes of cdc2-related genes are differentially expressed during the cell division cycle in plants. Plant Cell 8: 1465–1476.

    PubMed  Google Scholar 

  • Fowler, J.E. and Quatrano, R.S. 1997. Plant cell morphogenesis: plasma membrane interactions with the cytoskeleton and cell wall. Annu. Rev. Cell. Dev. Biol. 13: 697–743.

    PubMed  Google Scholar 

  • Francis, D. and Halford, N.G. 1995. The plant cell cycle. Physiol. Plant. 93: 365–374.

    Google Scholar 

  • Goldsmith, E.J. and Cobb, M.H. 1994. Protein kinases. Curr. Opin. Struct. Biol. 4: 833–840.

    PubMed  Google Scholar 

  • Grafi, G., Burnett, R.J., Helentjaris, T., Larkins, B.A., Decaprio, J.A., Sellers, W.R. and Kaelin, W.G. 1996. A maize cDNA encoding a member of the retinoblastoma protein family: involvement in endoreduplication. Proc. Natl. Acad. Sci. USA 93: 8962–8967.

    Google Scholar 

  • Hanks, S.K., Quinn, A.M. and Hunter, T. 1988 The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42–52.

    PubMed  Google Scholar 

  • Harper, J.W. and Elledge, S.J. 1998. The role of Cdk7 in CAK function, a retro-retrospective. Genes Dev. 12: 285–289.

    PubMed  Google Scholar 

  • Hashimoto, J., Hirabayashi, T., Hayano, Y., Hata, S., Ohashi, Y., Suzuka I, Utsugi, T., Toh-E, A. and Kikuchi, Y. 1992. Isolation and characterization of cDNA clones encoding cdc2 homologues from Oryza sativa: a functional homologue and cognate variants. Mol. Gen. Genet. 12: 865–876.

    Google Scholar 

  • Hata, S. 1991. cDNA cloning of a novel cdc2+/CDC28-related protein kinase from rice. FEBS Lett. 279: 149–152.

    PubMed  Google Scholar 

  • Hata, S., Kouchi, H., Suzuka, I. and Ishii, T. 1991. Isolation and characterization of cDNA clones for plant cyclins. EMBO J. 10: 2681–2688.

    PubMed  Google Scholar 

  • Heese, M., Mayer, U. and Jurgens, G. 1998. Cytokinesis in flowering plants: cellular process and developmental integration. Curr. Opin. Plant Biol. 1: 486–491.

    PubMed  Google Scholar 

  • Hemerly, A., Bergounioux, C., Van Montagu, M., Inzé, D. and Ferreira, P. 1992. Genes regulating the plant cell cycle: isolation of a mitotic-like cyclin from Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 89: 3295–3299.

    PubMed  Google Scholar 

  • Hemerly, A.S., Ferreira, P.J.E., Van Montagu, M., Engler, G. and Inzé, D. 1993. cdc2a expression in Arabidopsis is linked with the competence for cell division. Plant Cell 5: 1711–1723.

    Article  PubMed  Google Scholar 

  • Hirt, H., Pay, A., Bogre, L., Meskiene, I. and Heberle-Bors, E. 1993. cdc2MsB, a cognate cdc2 gene from alfalfa, complements the G1/S but not the G2/M transition of budding yeast cdc28 mutants. Plant J. 4: 61–69.

    PubMed  Google Scholar 

  • Hirt, H., Pay, A., Gyorgyev, J., Bako, L., Nemeth, K., Bogre, L., Schweyen, R. J., Heberle-Bors, E. and Dudits, D. 1991. Complementation of a yeast cell cycle mutant by an alfalfa cDNA encoding a protein kinase homologous to p34cdc2. Proc. Natl. Acad. Sci. USA 88: 1636–1640.

    PubMed  Google Scholar 

  • Hong, Z., Miao, G. and Verma, D. 1993. p34cdc2 protein kinase homolog from mothbean (Vigna aconitifolia). Plant Physiol. 101: 1399–1400.

    PubMed  Google Scholar 

  • Hunter, T. and Plowman, G.D. 1997. The protein kinases of budding yeast: six score and more. Science 22: 18–22.

    Google Scholar 

  • Imajuku, Y., Hirayama, T., Endoh, H. and Oka, A. 1992. Exonintron organization of the Arabidopsis thaliana protein kinase genes CDC2a and CDC2b. FEBS Lett. 304: 73–77.

    Google Scholar 

  • Jacobs, T.W. 1995. Cell cycle control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 317–339.

    Google Scholar 

  • Jeffrey, P.D., Russo, A.A., Polyak, K., Gibbs, E., Hurwitz, J., Massagué, J. and Pavletich, N.P. 1995. Mechanism of cdk activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376: 313–320.

    PubMed  Google Scholar 

  • Joubès, J., Phan, T.H., Just, D., Rothan, C., Bergounioux, C., Raymond, P. and Chevalier, C. 1999. Molecular and biochemical characterization of the involvement of cyclin-dependent kinase A during the early development of tomato fruit. Plant Physiol. 121: 857–869.

    Google Scholar 

  • Kaldis, P. 1999. The cdk-activating kinase (CAK): from yeast to mammals. Cell 55: 284–296.

    Google Scholar 

  • Kidou, S., Umeda, M. and Uchimiya, H. 1992. Nucleotide sequence of rice (Oryza sativa L.) cDNA homologous to cdc2 gene. DNA Seq. 5: 125–129.

    Google Scholar 

  • Kvarnheden, A., Tandre, K. and Engstrom, P. 1995. A cdc2 homologue and closely related processed retropseudogenes from Norway spruce. Plant Mol. Biol 27: 391–403.

    PubMed  Google Scholar 

  • Kvarnheden, A., Albert, V.A. and Engstrom, P. 1998. Molecular evolution of cdc2 pseudogenes in spruce (Picea). Plant Mol. Biol. 36: 767–774.

    PubMed  Google Scholar 

  • Lapidot-Lifson, Y., Patinkin, D., Prody, C.A., Ehrlich, G., Seidman, S., Ben-Aziz, R., Benseler, F., Eckstein, F., Zakut, H. and Soreq, H. 1992. Cloning and antisense oligodeoxynucleotide inhibition of a human homolog of cdc2 required in hematopoiesis. Proc. Natl. Acad. Sci. USA 89: 579–583.

    PubMed  Google Scholar 

  • Lenburg, M.E. and Oshea, E.K. 1996. Signaling phosphate starvation. Trends Biochem. Sci. 21: 383–387.

    PubMed  Google Scholar 

  • Logemann, E., Wu, S.C., Schroder, J., Schmelzer, E., Somssich, I.E. and Hahlbrock, K. 1995. Gene activation by UV light, fungal elicitor or fungal infection in Petroselinum crispum is correlated with repression of cell cycle-related genes. Plant J. 8: 865–876.

    PubMed  Google Scholar 

  • Lorbiecke, R. and Sauter, M. 1999. Adventitious root growth and cell-cycle induction in deepwater rice. Plant Physiol. 119: 21–29.

    PubMed  Google Scholar 

  • Magyar, Z., Meszaros, T., Miskolczi, P., Deak, M., Feher, A., Brown, S., Kondorosi, E., Athanasiadis, A., Pongor, S., Bilgin, M., Bako, L., Koncz, C. and Dudits, D. 1997. Cell cycle phase specificity of putative cyclin-dependent kinase variants in synchronized alfalfa cells. Plant Cell 9: 223–235.

    Article  PubMed  Google Scholar 

  • Martinez, M.C., Jorgensen, J.E., Lawton, M.A., Lamb, C.J. and Doerner, P.W. 1992. Spatial pattern of cdc2 expression in relation to meristem activity and cell proliferation during plant development. Proc. Natl. Acad. Sci. USA 89: 7360–7364.

    PubMed  Google Scholar 

  • Mendenhall, M.D. and Hodge, A.E. 1998. Regulation of cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62: 1191–1243.

    PubMed  Google Scholar 

  • Meyerowitz, E.M. 1997. Genetic control of cell division patterns in developing plants. Cell 88: 299–308.

    Article  PubMed  Google Scholar 

  • Meyerson, M., Enders, G.H., Wu, C.L., Su, L.K., Gorka, C., Nelson, C., Harlow, E. and Tsai, L.H. 1992. A family of human cdc2-related protein kinases. EMBO J. 11: 2909–2917.

    PubMed  Google Scholar 

  • Miao, G., Hong, Z. and Verma, D. 1991. Two functional soybean genes encoding p34cdc2 protein kinases are regulated by different plant developmental pathways. Proc. Natl. Acad. Sci. USA 90: 943–947.

    Google Scholar 

  • Michaelis, C. and Weeks, G. 1992. Isolation and characterization of a cdc2 cDNA from Dictyostelium discoideum. Biochim. Biophys. Acta 1132: 35–42.

    PubMed  Google Scholar 

  • Mironov, V., Deveylder, L., Van Montagu, M. and Inzé, D. 1999. Cyclin-dependent kinases and cell division in plants: the nexus. Plant Cell 11: 509–521.

    PubMed  Google Scholar 

  • Morgan, D.O. 1997. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell. Dev. Biol. 13: 261–291.

    PubMed  Google Scholar 

  • Nakagami, H., Sekine, M., Murakami, H. and Shinmyo, A. 1999. Tobacco retinoblastoma-related protein phosphorylated by a distinct cyclin-dependent kinase complex with Cdc2/cyclin D in vitro. Plant J. 18: 243–252.

    PubMed  Google Scholar 

  • Newman, T., de Bruijn, F.J., Green, P., Keegstra, K., Kende, H., McIntosh, L., Ohlrogge, J., Raikhel, N., Somerville, S., Thomashow, M., Retzel, E. and Somerville, C. 1994. Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol. 106: 1241–1255.

    PubMed  Google Scholar 

  • Nigg, E.A. 1995. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays 17: 471–480.

    PubMed  Google Scholar 

  • Norbury, C. and Nurse, P. 1992. Animal cell cycles and their control. Annu. Rev. Biochem. 61: 441–470.

    PubMed  Google Scholar 

  • Porat, R., Lu, P.Z. and Oneill, S.D. 1998. Arabidopsis SKP1, a homologue of a cell cycle regulator gene, is predominantly expressed in meristematic cells. Planta 204: 345–351.

    PubMed  Google Scholar 

  • Price, C.A., Reardon, E.M. and Lonsdale, D.M. 1996. A guide to naming sequenced plant genes. Plant Mol. Biol. 30: 225–227.

    PubMed  Google Scholar 

  • Renaudin, J.P., Doonan, J.H., Freeman, D., Hashimoto, J., Hirt, H., Inzé, D., Jacobs, T., Kouchi, H., Rouze, P., Sauter, M., Savoure, A., Sorrell, D. A., Sundaresan, V. and Murray, J.A.H. 1996. Plant cyclins: a unified nomenclature for plant A-, B-and D-type cyclins based on sequence organization. Plant Mol. Biol. 32: 1003–1018.

    PubMed  Google Scholar 

  • Rickert, P., Seghezzi, W., Shanahan, F., Cho, H. and Lees, E. 1996. Cyclin C/CDK8 is a novel CTD kinase associated with RNA polymerase II. Oncogene 12: 2631–2640.

    PubMed  Google Scholar 

  • Russo, A.A., Jeffrey, P.D., Patten, A.K., Massague, J. and Pavletich, N.P. 1996a. Crystal structure of the p27(Kip1) cyclin-dependentkinase inhibitor bound to the cyclin A Cdk2 complex. Nature 382: 325–331.

    Article  PubMed  Google Scholar 

  • Russo, A.A., Jeffrey, P.D. and Pavletich, N.P. 1996b. Structural basis of cyclin-dependent kinase activation by phosphorylation. Nature Struct. Biol. 3: 696–700.

    PubMed  Google Scholar 

  • Russo, A.A., Tong, L., Lee, J.O., Jeffrey, P.D. and Pavletich, N.P. 1998. Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16(INK4a). Nature 395: 237–243.

    PubMed  Google Scholar 

  • Sauter, M. 1997. Differential expression of a CAK (cdc2-activating kinase)-like protein kinase, cyclins and cdc2 genes from rice during the cell cycle and in response to gibberellin. Plant J. 11: 181–190.

    PubMed  Google Scholar 

  • Segers, G., Gadisseur, I., Bergounioux, C., Engler, J.D., Jacqmard, A., Van Montagu, M. and Inzé, D. 1996. The Arabidopsis cyclin-dependent kinase gene cdc2bAt is preferentially expressed during S and G(2) phases of the cell cycle. Plant J. 10: 601–612.

    PubMed  Google Scholar 

  • Serizawa, H., Makela, T.P., Conaway, J.W., Conaway, R.C., Weinberg, R.A. and Young, R.A. 1995. Association of CDKactivating kinase subunits with transcription factor TFIIH. Nature 374: 280–282.

    PubMed  Google Scholar 

  • Setiady, Y.Y., Sekine, M., Hariguchi, N., Kouchi, H. and Shinmyo, A. 1996. Molecular cloning and characterization of a cDNA clone that encodes a Cdc2 homolog from Nicotiana tabacum. Plant Cell Physiol. 37: 369–376.

    PubMed  Google Scholar 

  • Shaul, O., Van Montagu, M. and Inzé, D. 1996. Regulation of cell division in Arabidopsis. Crit. Rev. Plant Sci. 15: 97–112.

    Google Scholar 

  • Shimizu, S. and Mori, H. 1998. Analysis of cycles of dormancy and growth in pea axillary buds based on mRNA accumulation patterns of cell cycle-related genes. Plant Cell Physiol. 39: 255–262.

    PubMed  Google Scholar 

  • Soni, R., Carmichael, J.P., Shah, Z.H. and Murray, J.A.H. 1995. A family of cyclin D homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif. Plant Cell 7: 85–103.

    Article  PubMed  Google Scholar 

  • Sopory, S.K. and Munshi, M. 1998. Protein kinases and phosphatases and their role in cellular signaling in plants. Crit. Rev. Plant Sci. 17: 245–318.

    Google Scholar 

  • Sorrell, D.A., Combettes, B., Chaubet-Gigot, N., Gigot, C. and Murray, J.A.H. 1999. Distinct cyclin D genes show mitotic accumulation or constant levels of transcripts in tobacco bright yellow-2 cells. Plant Physiol. 119: 343–351.

    Article  PubMed  Google Scholar 

  • Sun, Y.J., Dilkes, B.P., Zhang, C.S., Dante, R.A., Carneiro, N.P., Lowe, K.S., Jung, R., Gordon-Kamm, W.J. and Larkins, B.A. 1999. Characterization of maize (Zea mays L.) Wee1 and its activity in developing endosperm. Proc. Natl. Acad. Sci. USA 96: 4180–4185.

    PubMed  Google Scholar 

  • Tassan, J.P., Jaquenoud, M., Leopold, P., Schultz, S.J. and Nigg, E.A. 1995. Identification of human cyclin-dependent kinase 8, a putative protein kinase partner for cyclin C. Proc. Natl. Acad. Sci. USA 92: 8871–8875.

    PubMed  Google Scholar 

  • Thuret, J.Y., Valay, J.G., Faye, G. and Mann, C. 1996. Civ1 (CAK in vivo), a novel Cdk-activating kinase. Cell 86: 565–576.

    PubMed  Google Scholar 

  • Trehin, C., Planchais, S., Glab, N., Perennes, C., Tregear, J. and Bergounioux, C. 1998. Cell cycle regulation by plant growth regulators: involvement of auxin and cytokinin in the re-entry of Petunia protoplasts into the cell cycle. Planta 206: 215–224.

    PubMed  Google Scholar 

  • Umeda, M., Bhalerao, R.P., Schell, J., Uchimiya, H. and Koncz, C. 1998. A distinct cyclin-dependent kinase-activating kinase of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 95: 5021–5026.

    PubMed  Google Scholar 

  • Umeda, M., Umedahara, C., Yamaguchi, M., Hashimoto, J. and Uchimiya, H. 1999. Differential expression of genes for cyclindependent protein kinases in rice plants. Plant Physiol. 119: 31–40.

    PubMed  Google Scholar 

  • Wang, H., Fowke, L.C. and Crosby, W.L. 1997. A plant cyclindependent kinase inhibitor gene. Nature 386: 451–452.

    Article  PubMed  Google Scholar 

  • Wang, H., Qi, Q.G., Schorr, P., Cutler, A.J., Crosby, W.L. and Fowke, L.C. 1998. ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J. 15: 501–510.

    PubMed  Google Scholar 

  • Xie, Q., Sanzburgos, P., Hannon, G. J. and Gutierrez, C. 1996. Plant cells contain a novel member of the retinoblastoma family of growth regulatory proteins. EMBO J. 15: 4900–4908.

    PubMed  Google Scholar 

  • Yamaguchi, M., Umeda, M. and Uchimiya, H. 1998. A rice homolog of Cdk7/MO15 phosphorylates both cyclin-dependent protein kinases and the carboxy-terminal domain of RNA polymerase II. Plant J. 16: 613–619.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joubès, J., Chevalier, C., Dudits, D. et al. CDK-related protein kinases in plants. Plant Mol Biol 43, 607–620 (2000). https://doi.org/10.1023/A:1006470301554

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006470301554

Navigation