Skip to main content
Log in

ERK signalling in metastatic human MDA-MB-231 breast carcinoma cells is adapted to obtain high urokinase expression and rapid cell proliferation

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Increased urokinase plasminogen activator (u-PA) production is associated with tumor invasion and metastasis in several malignancies, including breast cancer. The mechanisms underlying constitutive u-PA expression are not well understood. We examined the relationship between the signal strength of the ERK pathway and the level of u-PA expression in the metastatic human breast cancer cell line MDA-MB-231. Treatment with the MEK1 inhibitor PD98059 resulted in decreased ERK1/2 phosphorylation and decreased u-PA mRNA and protein expression. Inhibition of ERK1/2 activity also led to decreased cell proliferation and to decreased cyclin D1 expression. Less than 5% of total ERK1/2 was phosphorylated in exponentially growing MDA-MB-231 cells, and ERK1/2 activity could be stimulated by okadaic acid. Okadaic acid did not stimulate u-PA expression, but induced strong expression of the cdk-inhibitor p21Cip1. These findings suggest that ERK1/2 signaling is tuned to a level which results in high u-PA expression and rapid cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Liotta LA, Stetler-Stevenson WG. Tumor invasion and metastasis: an imbalance of positive and negative regulation. Cancer Res 1991; 51: 5054s–9s.

    PubMed  CAS  Google Scholar 

  2. Mignatti P, Rifkin DB. Biology and biochemistry of proteases in tumor invasion. Physiol Rev 1993; 73: 161–95.

    PubMed  CAS  Google Scholar 

  3. Lindblom A, Linder S. The metastatic phenotype-prognostic implications. Crit Rev Oncol/Hematol 1996; 24: 71–96.

    Article  CAS  Google Scholar 

  4. Carmeliet P, Schoonjans L, Kieckens L et al. Physiological consequences of loss of plasminogen activator gene function in mice. Nature 1994; 368: 419–24.

    Article  PubMed  CAS  Google Scholar 

  5. Andreasen P-A, Kjøller L, Christensen L, Duffy MJ. The urokinasetype plasminogen activator system in cancer metastasis: A review. Int J Cancer 1997; 72: 1–22.

    Article  PubMed  CAS  Google Scholar 

  6. Reuning U, Magdolen V, Wilhelm O et al. Multifunctional potential of the plasminogen activation system in tumor invasion and metastasis. Int J Oncol 1998; 13: 893–906.

    PubMed  CAS  Google Scholar 

  7. Lengyel E, Stepp E, Gum R et al. J Biol Chem 1995; 270: 23007–12.

    Article  PubMed  CAS  Google Scholar 

  8. Lengyel E, Gum R, Stepp E et al. Involvement of a mitogen-activated protein kinase signaling pathway in the regulation of urokinase promoter activity by c-Ha-ras. Cell Biochem 1996; 61: 430–43.

    Article  CAS  Google Scholar 

  9. Watabe T, Yoshida K, Shindoh M et al The Ets-1 and Ets-2 transcription factors activate the promoters for invasion-associated urokinase and collagenase genes in response to epidermal growth factor. Int J Cancer 1998; 77: 128–37.

    Article  PubMed  CAS  Google Scholar 

  10. Janulis M, Silberman S, Ambegaokar A et al. Role of mitogenactivated protein kinases and c-Jun/AP-1 trans-activating activity in the regulation of protease mRNAs and the malignant phenotype in NIH 3T3 fibroblasts. J Biol Chem 1999; 274: 801–13.

    Article  PubMed  CAS  Google Scholar 

  11. Davis RJ. Transcriptional regulation by MAP kinases. Mol Reprod Dev 1995; 42: 459–67.

    Article  PubMed  CAS  Google Scholar 

  12. Woodgett JR, Avruch J, Kyriakis J. The stress activated protein kinase pathway. Cancer Surv 1996; 27: 127–38.

    PubMed  CAS  Google Scholar 

  13. Russell M, Lange-Carter CA, Johnson GL. Direct interaction between Ras and the kinase domain of mitogen-activated protein kinase kinase kinase (MEKK1). J Biol Chem 1995; 270: 11757–60.

    Article  PubMed  CAS  Google Scholar 

  14. Ghiso JAA, Alonso DF, Farias EF et al. Deregulation of the signaling pathways controlling urokinase production – its relationship with the invasive phenotype. Eur J Biochem 1999; 263: 295–304.

    Article  CAS  Google Scholar 

  15. Holst-Hansen C, Johannessen B, Hoyer-Hansen G et al. Urokinasetype plasminogen activation in three human breast cancer cell lines correlates with their in vitro invasiveness. Clin Exp Metastasis 1996; 14: 297–307.

    PubMed  CAS  Google Scholar 

  16. Thompson EW, Paik S, Brunner N et al. Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol 1992; 150: 534–54.

    Article  PubMed  CAS  Google Scholar 

  17. Lee FS, Hagler J, Chen ZJ, Maniatis T. Activation of the IκBαkinase complex by MEKK1, a kinase of the JNK pathway. Cell 1997; 88: 213–222.

    Article  PubMed  CAS  Google Scholar 

  18. Molin M, Shoshan MC, Öhman K et al. Two novel adenovirus vector systems permitting regulated protein expression in gene transfer experiments. J Virol 1998; 72: 8358–61.

    PubMed  CAS  Google Scholar 

  19. Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res 1996; 6: 986–94.

    PubMed  CAS  Google Scholar 

  20. Zhou JN, Ljungdahl S, Shoshan M et al. Activation of tissue factor gene expression in breast carcinoma cells by stimulation of the RAFERK signalling pathway. Mol Carcinogen 1998; 21: 234–43.

    Article  CAS  Google Scholar 

  21. Pages G, Lenormand P, L'Allemain G et al. Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci USA 1993; 90: 8319–23.

    Article  PubMed  CAS  Google Scholar 

  22. Liu J-J, Chao J-R, Jiang M-C et al. Ras transformation results in an elevated level of cyclin D1 and acceleration of G1 progresison in NIH 3T3 cells. Mol Cell Biol 1995; 15: 3654–63.

    PubMed  CAS  Google Scholar 

  23. Lloyd AC, Obermüller F, Staddon S et al. Co-operating oncogenes converge to regulate cyclin/cdk complexes. Genes Dev 1997; 11: 663–77.

    PubMed  CAS  Google Scholar 

  24. Sewing A, Wiseman B, Lloyd AC, Land H. High intensity Raf signaling causes cell cycle arrest mediated by p21Cip1. Mol Cell Biol 1997; 17: 5588–97.

    PubMed  CAS  Google Scholar 

  25. Alblas J, Slager-Davidov R, Steenbergh PH et al. The role of MAP kinase in TPA-mediated cell cycle arrest of human breast cancer cells. Oncogene 1998; 16: 131–9.

    Article  PubMed  CAS  Google Scholar 

  26. D'Orazio D, Besser D, Marksitzer R et al. Cooperation of two PEA3/AP1 sites in uPA gene induction by TPA and FGF-2. Gene 1997; 201: 179–87.

    Article  PubMed  Google Scholar 

  27. Miralles F, Parra M, Caelles C et al. UV irradiation induces the murine urokinase-type plasminogen activator gene via the c-Jun N-terminal kinase signaling pathway: Requirement of an AP-1 enhancer element. Mol Cell Biol 1998; 18: 4537–47.

    PubMed  CAS  Google Scholar 

  28. Xing RH, Rabbiani SA. Transcriptional regulation of urokinase (uPA) gene expression in breast cancer cells: role of DNA methylation. Int J Cancer 1999; 81: 443–50.

    Article  PubMed  CAS  Google Scholar 

  29. Ljungdahl S, Linder S, Sollerbrandt K et al. Signal transduction in fibroblasts stably transformed by [Val12]Ras. The activities of extracellular-signal-regulated kinase and Jun-N-terminal kinase are only moderately increased, and the activity of the δ-inhibitor of c-Jun is not alleviated. Eur J Biochem 1997; 249: 648–56.

    Article  PubMed  CAS  Google Scholar 

  30. Ravi RK, Weber E, McMahon M et al. Activated Raf-1 causes growth arrest in human small cell lung cancer cells. J Clin Invest 1998; 101: 153–9.

    Article  PubMed  CAS  Google Scholar 

  31. Hazzalin CA, Cuenda A, Cano E et al. Effects of the inhibition of p38/RK MAP kinase on induction of five fos and jun genes by diverse stimuli. Oncogene 1997; 15: 2321–31.

    Article  PubMed  CAS  Google Scholar 

  32. Tombes RM, Auer KL, Mikkelsen R et al. The mitogen-activated protein (MAP) kinase cascade can either stimulate or inhibit DNA synthesis in primary cultures of rat hepatocytes depending upon whether its activation is acute/phasic or chronic. Biochem J 1998; 330: 1451–60.

    PubMed  CAS  Google Scholar 

  33. Irigoyen JP, Besser D, Nagamine Y. Cytoskeleton reorganization induces the urokinase-type plasminogen activator gene via the Ras/extracellular signal-regulated kinase (ERK) signaling pathway. J Biol Chem 1997; 272: 1904–9.

    Article  PubMed  CAS  Google Scholar 

  34. Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 1995; 80: 179–85.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seddighzadeh, M., Zhou, JN., Kronenwett, U. et al. ERK signalling in metastatic human MDA-MB-231 breast carcinoma cells is adapted to obtain high urokinase expression and rapid cell proliferation. Clin Exp Metastasis 17, 649–654 (1999). https://doi.org/10.1023/A:1006741228402

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006741228402

Navigation