Skip to main content
Log in

Efficient DNA transfection in neuronal and astrocytic cell lines

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

We have studied different parameters for efficient DNA transfection in various cell types and with different size of the promoter. Here we report that the optimum condition for DNA transfection by electroporation is 350 V/960 μF for PC12, 450V/960 μF C6 cells, and 250 V/500 μF for COS-1 cells. For the human neuroblastoma (SK-N-SH) cells the optimum condition for DNA transfection is by the calcium phosphate method. In promoter mapping studies, a serial deletion approach is commonly used. To optimize transfection we have selected three DNA constructs that varied in size from 4.5 to 12.4 kilobases (kb). We measured the promoter activity of these constructs under conditions of `equal amount', `equimolar', and `equimolar plus carrier DNA to make it equal amount'. We recommend that for comparative purpose, transfection should be carried out under `equimolar condition' without a need to adjust the total amount of DNA by carrier DNA. Taken together, our results suggest that efficient methods for DNA transfection are important to study gene regulation by devising better ways to deliver DNA into the mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Graham FL & Van der Eb AJ (1973) Virology 52: 456–467

    Google Scholar 

  2. Chen C & Okayama H (1987) Mol. Cell. Biol. 7: 2745–2752

    Google Scholar 

  3. Schaeffer-Ridder M, Wang Y & Hofschneider PH (1982) Science 215: 166–168

    Google Scholar 

  4. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringolds GM & Danielsen M (1987) Proc. Natl. Acad. Sci. USA 84: 7413–7417

    Google Scholar 

  5. McCutchan JH & Pagano JS (1968) J. Natl. Cancer Inst. 41: 351–357 121

    Google Scholar 

  6. Lopata MA, Cleveland DW & Sollner-Webb B (1984) Nucleic Acids Res. 12: 5707–5711

    Google Scholar 

  7. Cone RD & Mulligan RC (1984) Proc. Natl. Acad. Sci. USA 81: 6349–6353

    Google Scholar 

  8. Capecchi MR (1980) Cell 22: 479–488

    Google Scholar 

  9. Neumann E, Schaefer-Ridder M, Wang Y & Hofschneider PH (1982) EMBO J. 1: 841–845

    Google Scholar 

  10. Chu G, Hayakawa H & Berg P (1987) Nucleic Acids Res. 15: 1311–1326

    Google Scholar 

  11. Lahiri DK, Nall C & Ge Y (1999) Mol. Brain Res. 71: 32–41

    Google Scholar 

  12. Song W & Lahiri DK (1995) Nucleic Acids Res. 23: 3609–3611

    Google Scholar 

  13. Xie TD, Sun L & Tsong TY (1990) Biophys. J. 58: 13–19

    Google Scholar 

  14. Song W & Lahiri DK (1998) Gene 217: 165–176

    Google Scholar 

  15. Lahiri DK & Robakis NK (1991) Mol. Brain Res. 9: 253–257

    Google Scholar 

  16. Hay R, Caputo J, Chen TR, Macy M, McClintock P & Reid Y (1988) ATCC Collection Catalogue of Cell Lines and Hybridomas, 7th edn, ATCC, Rockville, MD

    Google Scholar 

  17. Higgins GA, Lewis DA, Bahmanyar S, Goldgaber D, Gajdusek DC, Young WG, Morrison JH & Wilson MC (1988) Proc. Natl. Acad. Sci. USA 85: 1297–1301

    Google Scholar 

  18. LeBlanc AC, Xue R & Gambetti P (1996) J. Neurochem. 66: 2300–2310

    Google Scholar 

  19. Kubiniec RT, Liang H & Hui SW (1990) Biotechniques 8: 1–3

    Google Scholar 

  20. Wolf H, Rols MP, Boldt E, Neumann E & Teissie J (1994) Biophys. J. 66: 524–531

    Google Scholar 

  21. Nickoloff JA & Reynolds RJ (1992) Anal. Biochem. 205: 237–243

    Google Scholar 

  22. Boggs SS, Gregg RG, Borenstein N & Smithies O (1986) Exp. Hematol. 14: 988–994

    Google Scholar 

  23. Andreason GL & Evans GA (1988) Biotechniques 6: 650–660

    Google Scholar 

  24. Sukharev SL, Klenchin VA, Chernomordil LV & Chizmadzhev YA (1992) Biophys. J. 63: 1320–1327

    Google Scholar 

  25. Watanabe SY, Albsoul-Younes AM, Kawano T, Itoh H, Kaziro Y, Nakajima S & Nakajima Y (1999) Neurosci. Res. 33: 71–78

    Google Scholar 

  26. Kohrmann M, Haubensak W, Hemraj I, Kaether C, Lessmann VJ & Kiebler MA (1999) J. Neurosci. Res. 58: 831–835

    Google Scholar 

  27. Teruel MN, Blanpied TA, Shen K, Augustine GJ & Meyer T (1999) J. Neurosci. Methods 93: 37–48

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, C., Song, W. & Lahiri, D.K. Efficient DNA transfection in neuronal and astrocytic cell lines. Mol Biol Rep 27, 113–121 (2000). https://doi.org/10.1023/A:1007173906990

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007173906990

Navigation