Skip to main content
Log in

Neuroinflammatory Signaling Upregulation in Alzheimer's Disease

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alzheimer's disease (AD) is a progressive, neurodestructive process of the human neocortex, characterized by the deterioration of memory and higher cognitive function. A progressive and irreversible brain disorder, AD is characterized by three major pathogenic episodes involving (a) an aberrant processing and deposition of β-amyloid precursor protein (βAPP) to form neurotoxic beta-amyloid (βA) peptides and an aggregated insoluble polymer of βA that forms the senile plaque, (b) the establishment of intraneuronal neuritic tau pathology yielding widespread deposits of agyrophilic neurofibrillary tangles (NFT) and (c) the initiation and proliferation of a brain-specific inflammatory response. These three seemingly disperse attributes of AD etiopathogenesis are linked by the fact that proinflammatory microglia, reactive astrocytes and their associated cytokines and chemokines are associated with the biology of the microtubule associated protein tau, βA speciation and aggregation. Missense mutations in the presenilin genes PS1 and PS2, implicated in early onset familial AD, cause abnormal βAPP processing with resultant overproduction of βA42 and related neurotoxic peptides. Specific βA fragments such as βA42 can further potentiate proinflammatory mechanisms. Expression of the inducible oxidoreductase cyclooxygenase-2 and cytosolic phospholipase A2 (cPLA2) are strongly activated during cerebral ischemia and trauma, epilepsy and AD, indicating the induction of proinflammatory gene pathways as a response to brain injury. Neurotoxic metals such as aluminum and zinc, both implicated in AD etiopathogenesis, and arachidonic acid, a major metabolite of brain cPLA2 activity, each polymerize hyperphosphorylated tau to form NFT-like bundles. Further, epidemiological and longitudinal studies have identified a reduced risk for AD in patients (<70 yrs) previously treated with non-steroidal anti-inflammatory drugs for non-CNS afflictions that include arthritis. This review will focus on the interrelationships between the mechanisms of PS1, PS2 and βAPP gene expression, tau and βA deposition and the induction, regulation and proliferation in AD of the neuroinflammatory response. Novel therapeutic interventions in AD are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Braak, H. and Braak, E. 1997. Staging of Alzheimer-related cortical destruction. Int. Psychogeriatr. 257:61.

    Google Scholar 

  2. Selkoe, D. J. 1994. Normal and abnormal biology of the beta-amyloid precursor protein. Ann. Rev. Neurosci. 17:489-517.

    Google Scholar 

  3. Ray, W. J., Ashall, F., and Goate, A. M. 1998. Molecular pathogenesis of sporadic and familial forms of Alzheimer's disease. Molec. Med. Today 4:151-157.

    Google Scholar 

  4. St. George-Hyslop, P. H. 2000. Molecular genetics of Alzheimer's disease. Biol. Psychiatry 47:183-199.

    Google Scholar 

  5. McGeer, P. L. and McGeer, E G. 1995. The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res. Rev. 21:195-218.

    Google Scholar 

  6. McGeer, P. L., Schulzer, M., and McGeer, E. G. 1996. Arthritis and antiinflammatory agents as possible protective factors for Alzheimer's disease; a review of 17 epidemiologic studies. Neurology 47:425-432.

    Google Scholar 

  7. Emmerling, M. R., Moore, C. J., Doyle, P. D., Carroll, R. T., and Davis, R. E. 1993. Phospholipase A2 activation influences the processing and secretion of the amyloid precursor protein. Biochem. Biophys. Res. Commun. 197:292-297.

    Google Scholar 

  8. Stephenson, D., Rash, K., Smalstig, B., Roberts, E., Johnstone, E., Sharp, J., Panetta, J., Little, S., Kramer, R., and Clemens, J. 1999. Cytosolic phospholipase A2 is induced in reactive glia following different forms of neurodegeneration. Glia 27:110-128.

    Google Scholar 

  9. Halliday, G., Robinson, S. R., Shepherd, C., and Kril, J. 2000. Alzheimer's disease and inflammation: a review of cellular and therapeutic mechanisms. Clin. Exp. Pharmacol. Physiol. 27:1-8.

    Google Scholar 

  10. Lukiw, W. J. and Bazan, N. G. 1997. Cyclooxygenase-2 RNA message abundance, stability, and hypervariability in sporadic Alzheimer neocortex. PMID: 9452008; UI: 98112387. J. Neurosci. Res. 50:937-945.

    Google Scholar 

  11. Lukiw, W. J. and Bazan, N. G. 1998. Strong nuclear factor-kappaB-DNA binding parallels cyclooxygenase-2 gene transcription in aging and in sporadic Alzheimer's disease superior temporal lobe neocortex. J. Neurosci. Res. 53:583-592.

    Google Scholar 

  12. Pasinetti, G. M. and Aisen, P. S. 1998. Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer's disease brain. Neuroscience 87:319-324.

    Google Scholar 

  13. Bazan, N. G. 1998. The neuromessenger platelet-activating factor in plasticity and neurodegeneration. Prog. Brain Res. 118:281-291.

    Google Scholar 

  14. Rockenstein, E. M., McConlogue, L., Tan, H., et al. 1995. Levels and alternative splicing of amyloid beta protein precurser (APP) transcripts in brains of APP transgenic mice and humans with Alzheimer's disease. JBC 270:28257-28267.

    Google Scholar 

  15. Mattson, M. P. 1997. Cellular actions of beta-amyloid precurser protein and its soluble and fibrillogenic derivatives. Physiol. Rev. 77:1081-1132.

    Google Scholar 

  16. Alzheimer, A., Stelzmann, R. A., Schnitzlein, H. N., et al. 1995. An English translation of Alzheimer's 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde” Clin. Anat. 8:429-431.

    Google Scholar 

  17. Hla, T. and Neilson, K. 1992. Human cyclooxygenase-2 cDNA. Proc. Natl. Acad. Sci. 89:7384-7388.

    Google Scholar 

  18. Kosaka, T., Miyata, A., Ihara, H., et al. 1994. Characterization of the human gene (PTGS2) encoding prostaglandinendoperoxide 2 synthase. Eur. J. Biochem. 221:889-897.

    Google Scholar 

  19. Lukiw, W. J., Pelaez, R. P., Martinez J., and Bazan, N. G. 1998. Budesonide epimer R or dexamethasone selectively inhibit platelet-activating factor-induced or interleukin 1betainduced DNA binding activity of cis-acting transcription factors and cyclooxygenase-2 gene expression in human epidermal keratinocytes. Proc. Natl. Acad. Sci. USA 95:3914-3919.

    Google Scholar 

  20. Nogawa, S., Zhang, F., Ross, M. E., et al. 1997. COX-2 gene expression in neurons contributes to ischemic brain damage. J. Neurosci. 17:2746-2755.

    Google Scholar 

  21. Ristmaki, A., Narko, K., and Hla, T. 1996. Down-regulation of cytokine-induced cyclooxygenase-2 transcript isoforms by dexamethasone: evidence for post-transcriptional regulation. Biochem. J. 318:325-331.

    Google Scholar 

  22. Bazan, N. G., Fletcher, B. S., Herschman, H. R., et al. 1994. Platelet-activating factor and retinoic acid synergistically activate the inducible prostaglandin synthase gene. Proc. Natl. Acad. Sci. USA 91:5252-5256.

    Google Scholar 

  23. Marcheselli, V. L. and Bazan, N. G. 1996. Sustained induction of prostaglandin endoperoxide synthase-2 by seizures in hippocampus. Inhibition by a platelet-activating factor antagonist. J. Biol. Chem. 271:24794-24799.

    Google Scholar 

  24. Dickson, D. W., Lee, S. C., Mattiace, L. A., et al. 1993. Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer's disease. Glia 7:75-83.

    Google Scholar 

  25. Lee, S. C., Dickson, D. W., and Brosnan, C. F. 1995. Interleukin-1, nitric oxide and reactive astrocytes. Brain Behav. Immun. 9:345-354.

    Google Scholar 

  26. Sen, R. and Baltimore, D. 1986. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46:705-716.

    Google Scholar 

  27. Baeuerle, P. A. and Henkel, T. 1994. Function and activation of NF-kappa B in the immune system. Annu. Rev. Immunol. 12:141-179.

    Google Scholar 

  28. Kaltschmidt, C., Kaltschmidt, B., and Neumann, H. 1994. Constitutive NF-kappa B activity in neurons. Mol. Cell. Biol. 14:3981-3992.

    Google Scholar 

  29. Kaltschmidt, B., Uherek, M., Volk, B., et al. 1997. Transcription factor NF-kappaB is activated in primary neurons by amyloid beta peptides and in neurons surrounding early plaques from patients with Alzheimer disease. Proc. Natl. Acad. Sci. USA 94:2642-2647.

    Google Scholar 

  30. Stylianou, E. and Saklatvala, J. 1998. Interleukin-1. Int. J. Biochem. Cell Biol. 30:1075-1079.

    Google Scholar 

  31. Kaltschmidt, C., Kaltschmidt, B., and Baeuerle, P. A. 1993. Brain synapses contain inducible forms of the transcription factor NF-kappa B. Mech. Dev. 43:135-147.

    Google Scholar 

  32. Suzuki, T., Mitake, S., Okumura-Noji, K., et al. 1997. Presence of NF-kappaB-like and IkappaB-like immunoreactivities in postsynaptic densities. Neuroreport 8:2931-2935.

    Google Scholar 

  33. Stylianou, E., O'Neill, L. A., Rawlinson, L., et al., 1992. Interleukin 1 induces NF-kappa B through its type I but not its type II receptor in lymphocytes. J. Biol. Chem. 267:15836-15841.

    Google Scholar 

  34. Traenckner, E. B., Pahl, H. L., Henkel, T., et al. 1995. Phosphorylation of human I kappa B-alpha on serines 32 and 36 controls I kappa B-alpha proteolysis and NF-kappa B activation in response to diverse stimuli. EMBO J. 14:2876-2883.

    Google Scholar 

  35. Fujita, T., Nolan, G. P., Ghosh, S., et al. 1992. Independent modes of transcriptional activation by the p50 and p65 subunits of NF-kappa B. Genes Dev. 6:775-787.

    Google Scholar 

  36. Verma, I. M., Stevenson, J. K., Schwarz, E. M., et al. 1995. Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev. 15:2723-2735.

    Google Scholar 

  37. Boissiere, F., Hunot, S., Faucheux, B., et al. 1997. Nuclear translocation of NF-kappaB in cholinergic neurons of patients with Alzheimer's disease. Neuroreport 8:2849-2852.

    Google Scholar 

  38. Baeuerle, P. A. and Baltimore, D. 1996. NF-κB: Ten years after. Cell 87:13-20.

    Google Scholar 

  39. Grilli, M., Goffi, F., Memo, M., et al. 1996. Interleukin-1beta and glutamate activate the NK-kappaB/Rel binding site from the regulatory region of the amyloid precursor protein gene in primary neuronal cultures. J. Biol. Chem. 271:15002-15007.

    Google Scholar 

  40. Newton, R., Kuitert, L. M., Bergmann, M., et al. 1997. Evidence for involvement of NF-kappaB in the transcriptional control of COX-2 gene expression by IL-1beta. Biochem. Biophys. Res. Commun. 237:28-32.

    Google Scholar 

  41. Newton, R., Kuitert, L. M., Slater, D. M., et al. 1997. Cytokine induction of cytosolic phospholipase A2 and cyclooxygenase-2 mRNA is suppressed by glucocorticoids in human epithelial cells. Life Sci. 60:67-78.

    Google Scholar 

  42. Newton, R., Stevens, D. A., Hart, L. A., et al. 1997. Superinduction of COX-2 mRNA by cycloheximide and interleukin-1 beta involves increased transcription and correlates with increased NF-kappaB and JNK a c t i v a t i o n. FEBS Lett. 418:135-138.

    Google Scholar 

  43. Lukiw, W. J., LeBlanc, H. J., Carver, L. A., McLachlan, D. R., and Bazan, N. G. 1998. Run-on gene transcription in human neocortical nuclei. Inhibition by nanomolar aluminum and implications for neurodegenerative disease. J. Mol. Neurosci. 11:67-78.

    Google Scholar 

  44. Grilli, M., Pizzi, M., Memo, M., et al. 1996. Neuroprotection by aspirin and sodium salicylate through blockade of NF-kappa B activation. Science 274:1383-1385.

    Google Scholar 

  45. Guerrini, L., Molteni, A., Wirth, T., et al. 1997. Glutamatedependent activation of NF-kappaB during mouse cerebellum development. J. Neurosci. 17:6057-6063.

    Google Scholar 

  46. Brostjan, C., Anrather, J., Csizmadia, V., et al. 1996. Glucocorticoid-mediated repression of NFkappaB activity in endothelial cells does not involve induction of IkappaBalpha synthesis. J. Biol. Chem. 271:19612-19616.

    Google Scholar 

  47. Lukiw, W. J., Martinez, J., Pelaez, R. P., and Bazan, N. G. 1999. The interleukin-1 type 2 receptor gene displays immediate early gene responsiveness in glucocorticoid-stimulated human epidermal keratinocytes. J. Biol. Chem. 274:8630-8638.

    Google Scholar 

  48. Behl, C., Davis, J. B., Lesley, R., et al. 1994. Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77:817-827.

    Google Scholar 

  49. Hensley, K., Butterfield, D. A., Hall, N., et al. 1996. Reactive oxygen species as causal agents in the neurotoxicity of the Alzheimer's disease-associated amyloid beta peptide. Ann NY Acad. Sci. 786:120-134.

    Google Scholar 

  50. O'Neill, L. A. and Kaltschmidt, C. 1997. NF-kappaB: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci. 20:252-258.

    Google Scholar 

  51. Rong, Y. and Baudry, M. 1996. Seizure activity results in a rapid induction of nuclear factor-kappa B in adult but not juvenile rat limbic structures. J. Neurochem. 67:662-668.

    Google Scholar 

  52. Salminen, A., Liu, P. K., and Hsu, C. Y. 1995. Alteration of transcription factor binding activities in the ischemic rat brain. Biochem. Biophys. Res. Commun. 212:939-944.

    Google Scholar 

  53. Colangelo, V., Lukiw, W. J., Gordon, W. C., et al. 1999. COX-2 as a mediator of cerebral ischemic tolerance. ASN Meeting abstract 95-S30B.

  54. Lukiw, W. J. and Bazan, N. G. 2000. Presenilin-1 (PS1) and cyclooxygenase-2 (COX-2) genes exhibit coordinated transcription in experimental epileptogenesis. American Epilepsy Society Abstract. K.05.

  55. Terai, K., Matsuo, A., McGeer, E. G., et al. 1996. Enhancement of immunoreactivity for NF-kappaB in human cerebral infarctions. Brain Res. 739:343-349.

    Google Scholar 

  56. Kaltschmidt, B., Baeuerle, P. A., and Kaltschmidt, C. 1993. Potential involvement of the transcription factor NF-kappa B in neurological disorders. Mol. Aspects Med. 14:171-190.

    Google Scholar 

  57. Hunot, S., Brugg, B., Ricard, D., et al. 1997. Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with parkinson disease. Proc. Natl. Acad. Sci. USA 94:7531-7536.

    Google Scholar 

  58. Kitamura, Y., Shimohama, S., Ota, T, et al. 1997. Alteration of transcription factors NF-kappaB and STAT1 in Alzheimer's disease brains. Neurosci. Lett. 237:17-20.

    Google Scholar 

  59. Liu, M., Kumar, K. U., Pater, M. M., et al. 1997. Dual NFl-requiring effect of human neurotropic JC virus composite pentanucleotide repeat elements on early and late viral gene expression. Virology 227:7-12.

    Google Scholar 

  60. Perkins, D. J. and Kniss, D. A. 1997. Tumor necrosis factoralpha promotes sustained cyclooxygenase-2 expression: attenuation by dexamethasone and NSAIDS. Prostaglandins 54:727-743.

    Google Scholar 

  61. Neve, R. L., Rogers, J., and Higgins, G. A. 1990. The Alzheimer amyloid precursor-related transcript lacking the beta/A4 sequence is specifically increased in Alzheimer's disease brain. Neuron 5:329-338.

    Google Scholar 

  62. Lukiw, W. J., Rogaev, E. I., Wong, L., et al. 1994. Protein-DNA interactions in the promoter region of the amyloid precursor protein (APP) gene in human neocortex. Brain Res. Mol. Brain Res. 22:121-131.

    Google Scholar 

  63. Li, J., Xu, M., Zhou, H., et al. 1997. Alzheimer presenilins in the nuclear membrane, interphase kinetochores, and centrosomes suggest a role in chromosome segregation. Cell 90:917-927.

    Google Scholar 

  64. Shirotani, K., Takahashi, K., Ozawa, K., et al. 1997. Determination of a cleavage site of presenilin 2 protein in stably transfected SH-SY5Y human neuroblastoma cell lines. Biochem. Biophys. Res. Commun. 240:728-731.

    Google Scholar 

  65. Chui, D. H., Shirotani, K., Tanahashi, H., et al. 1998. Both Nterminal and c-terminal fragments of presenilin 1 colocalize with neurofibrillary tangles in neurons and dystrophic neurites of senile plaques in Alzheimer's disease. J. Neurosci. Res. 53:99-106.

    Google Scholar 

  66. Spencer, A. G., Woods, J. W., Arakawa, T., et al. 1998. Subcellular localization of a prostaglandin endoperoxide H synthases-1 and-2 by immunoelectron microscopy. J. Biol. Chem. 273:9886-9893.

    Google Scholar 

  67. Rogaev, E. I., Bazan, N. G., and Lukiw, W. J. 1998. Common regulatory elements in the promoters of genes linked to familial or sporadic Alzheimer's disease (AD). SFN 28th Annual Meeting; Los Angeles, CA.

  68. Lukiw, W. J., Rogaev, E. I., and Bazan, N. G. 2000. Analysis of transcriptional regulatory mechanisms in nine genes associated with Alzheimer's disease (AD). J. Neurosci. Res. (Submitted).

  69. Weggen, S., Diehlmann, A., Buslei, R., et al. 1998. Prominent expression of presenilin-1 in senile plaques and reactive astrocytes in Alzheimer's disease brain. Neuroreport 9:3279-3283.

    Google Scholar 

  70. Tanimukai, H., Imaizumi, K., Kudo, T., et al. 1998. Alzheimerassociated presenilin-1 gene is induced in gerbil hippocampus after transient ischemia. Mol. Brain Res. 54:212-218.

    Google Scholar 

  71. Holcomb, L., Gordon, M. N., McGowan, E., et al. 1998. Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat. Med. 4:97-100.

    Google Scholar 

  72. Goldgaber, D., Harris, H. W., Hla, T., et al. 1989. Interleukin 1 regulates synthesis of amyloid beta-protein precursor mRNA in human endothelial cells. Proc. Natl. Acad. Sci. USA 86:7606-7610.

    Google Scholar 

  73. Tong, W., Shah, D., Xu, J., Diehl, J. A., Hans, A., Hannink, M., and Sun, G. Y. 1999. Involvement of lipid mediators on cytokine signaling and induction of secretory phospholipase A2 in Immortalized astrocytes (DITNC). J. Mol. Neurosci. 12:89-99.

    Google Scholar 

  74. Shimizu, T. and Wolfe, L. S. 1990. Arachidonic acid cascade and signal transduction. J. Neurochem. 55:1-15.

    Google Scholar 

  75. Murakami, M., Nakatani, Y., Atsumi, G. Inoue, K., and Kudo, I. 1997. Regulatory functions of phospholipase A2. Crit. Rev. Immunol. 17:225-228.

    Google Scholar 

  76. Gijon, M. A. and Leslie, C. C. 1999. Regulation of arachidonic acid release and cytosolic phospholipase A2 activation. J. Leukoc. Biol. 65:330-336.

    Google Scholar 

  77. Hirabayashi, T., Kume, K., Hirose, K., Yokomizo, T., Iino, M., Itoh, H., and Shimizu, T. 1999. Critical duration of intracellular Ca2+response required for continuous translocation and activation of cytosolic phospholipase A2. J. Biol. Chem. 274:5163-5169.

    Google Scholar 

  78. Suzuki, N., Ishizaki, J., Yokota, Y., Higashino, K., Ono, T., Ikeda, M., Fujii, N., Kawamoto, K., and Hanasaki, K. 2000. Structures, enzymatic properties, and expression of novel human and mouse secretory phospholipase A(2)s. J. Biol. Chem. 275:5785-5793.

    Google Scholar 

  79. Peplow, P. V. 1999. Regulation of platelet-activating factor (PAF) activity in human diseases by phospholipase A2 inhibitors, PAF acetylhydrolases, PAF receptor antagonists and free radical scavengers. Prostaglandins Leukot. Essent. Fatty Acids 61:65-82.

    Google Scholar 

  80. Snowdon, D. A., Greiner, L. H., Mortimer, J. A., et al. 1997. Brain infarction and the clinical expression of Alzheimer disease. JAMA 277:813-817.

    Google Scholar 

  81. Mirra, S. S. and Gearing, M. 1997. Brain infarction and the clinical expression of Alzheimer's disease. JAMA 278:113.

    Google Scholar 

  82. Heyman, A., Fillenbaum, G. G., Welsh-Bohmer, K. A., et al. 1998. Cerebral infarcts in patients with autopsy-proven Alzheimer's disease: CERAD, part XVIII. Consortium to Establish a Registry for Alzheimer's Disease. Neurology 51:159-162.

    Google Scholar 

  83. Colangelo, V., Lukiw, W. J., Gordon, W. C., et al. 1999. COX-2 as a mediator of cerebral ischemic tolerance. ASN Meeting abstract 95-S30B.

  84. Bing, G., Wilson, B., Hudson, P., Jin, L., Feng, Z., Zhang, W., Bing, R., and Hong, J. S. 1997. A single dose of kainic acid elevates the levels of enkephalins and activator protein-1 transcription factors in the hippocampus for up to 1 year. Proc. Natl. Acad. Sci. USA 94:9422-9427.

    Google Scholar 

  85. Lukiw, W. J., Tu, B., Marcheselli, V. L., and Bazan, N. G. 1999. Delayed hippocampal activation of the transcription factor NF-κB in experimental epileptogenesis. AES 53rd Annual Meeting; Orlando.

  86. Frederikse, P. H. and Zigler, J. S. Jr. 1998. Presenilin expression in the ocular lens. Current Eye Research 17:947-952.

    Google Scholar 

  87. Benzing, W. C., Wujek, J. R., Ward, E. K., Shaffer, D., Ashe, K. H., Younkin, S. G., and Brunden, K. R. 1999. Evidence for glial-mediated inflammation in aged APP(SW) transgenic mice. Neurobiol. Aging 20:581-589.

    Google Scholar 

  88. Mantyh, P. W., Ghilardi, J. R., Rogers, S., DeMaster, E., Allen, C. J., Stimson, E. R., and Maggio, J. E. 1993. Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of beta-amyloid peptide. J. Neurochem. 61:1171-1174.

    Google Scholar 

  89. Lukiw, W. J. 1997. Aluminum in Alzheimer's disease. Pages 113-126 in Yasui, M., Strong, M., Ota, K., and Verity, M. A. (eds.), Mineral and Metal Neurotoxicology, CRC Press, Boca Raton Florida.

    Google Scholar 

  90. Campbell, A., Kumar, A., La Rosa, F. G., Prasad, K. N., and Bondy, S. C. 2000. Aluminum increases levels of beta-amyloid and ubiquitin in neuroblastoma but not in glioma cells. Proc. Soc. Exp. Biol. Med. 223:397-402.

    Google Scholar 

  91. Stephenson, D. T., Lemere, C. A., Selkoe, D. J., and Clemens, J. A. 1996. Cytosolic phospholipase A2 (cPLA2) immunoreactivity is elevated in Alzheimer's disease brain. Neurobiol. Dis. 3:51-63.

    Google Scholar 

  92. King, M. E., Ahuja, V., Binder, L. I., and Kuret, J. 1999. Ligand-dependent tau filament formation: implications for Alzheimer's disease progression. Biochemistry 38:14851-14859.

    Google Scholar 

  93. Yates, S. L., Burgess, L. H., Kocsis-Angle, J., Antal, J. M., Dority, M. D., Embury, P. B., Piotrkowski, A. M., and Brunden, K. R. 2000. Amyloid beta and amylin fibrils induce increases in proinflammatory cytokine and chemokine production by THP-1 cells and murine microglia. J. Neurochem. 74:1017-1025.

    Google Scholar 

  94. Abdel-Ghany, M., el-Sebae, A. K., and Shalloway, D. 1993. Aluminum-induced nonenzymatic phospho-incorporation into human tau and other proteins. J. Biol. Chem. 268:11976-11981.

    Google Scholar 

  95. Bush, A. I., Pettingell, W. H. Jr., Paradis, M. D., and Tanzi, R. E. 1994. Modulation of A beta adhesiveness and secretase site cleavage by zinc. J. Biol. Chem. 269:12152-12158.

    Google Scholar 

  96. Moir, R. D., Atwood, C. S., Huang, X., Tanzi, R. E., and Bush, A. I. 1999. Mounting evidence for the involvement of zinc and copper in Alzheimer's disease. Eur. J. Clin. Invest. 29:569-570.

    Google Scholar 

  97. Exley, C. 1999. A molecular mechanism of aluminium-induced Alzheimer's disease? J. Inorg. Biochem. 76:133-140.

    Google Scholar 

  98. Christen, Y. 2000. Oxidative stress and Alzheimer disease. Am. J. Clin. Nutr. 71:621S-629S.

    Google Scholar 

  99. Cuajungco, M. P. and Lees, G. J. 1997. Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiol. Dis. 4:137-169.

    Google Scholar 

  100. Savory, J., Huang, Y., Wills, M. R., and Herman, M. M. 1998. Reversal by desferrioxamine of tau protein aggregates following two days of treatment in aluminuminduced neurofibrillary degeneration in rabbit: implications for clinical trials in Alzheimer's disease. Neurotoxicology 19:209-214.

    Google Scholar 

  101. Suh, S. W., Jensen, K. B., Jensen, M. S., Silva, D. S., Kesslak, P. J., Danscher, G., and Frederickson, C. J. 2000. Histochemically reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of Alzheimer's diseased brains. Brain Res. 852:274-278.

    Google Scholar 

  102. Walker, P. R., LeBlanc, J., and Sikorska, M. 1989. Effects of aluminum and other cations on the structure of brain and liver chromatin. Biochemistry 28:3911-3915.

    Google Scholar 

  103. Klegeris, A. and McGeer, P. L. 2000. Interaction of various intracellular signaling mechanisms involved in mononuclear phagocyte toxicity toward neuronal cells. J. Leukoc. Biol. 67:127-133.

    Google Scholar 

  104. Ceballos-Picot, I., Merad-Boudia, M., Nicole, A., Thevenin, M., Hellier, G., Legrain, S., and Berr, C. 1996. Peripheral antioxidant enzyme activities and selenium in elderly subjects and in dementia of Alzheimer's type-place of the extracellular glutathione peroxidase. Free Radic. Biol. Med. 20:579-587.

    Google Scholar 

  105. Barinaga, M. 1999. An immunization against Alzheimer's? Science 285:175-177.

    Google Scholar 

  106. Kramer, R. M., Stephenson, D. T., Roberts, E. F., and Clemens, J. A. 1996. Cytosolic phospholipase A2 (cPLA2) and lipid mediator release in the brain. J. Lipid Mediat. Cell Signal 14:3-7.

    Google Scholar 

  107. Lukiw, W. J., Rodriguez de Turco, E. B., and Bazan, N. G. 2000. Brain phospholipase A2 (PLA2) in cerebral injury, neural degeneration and Alzheimer's disease. Biochemica et Biophysica Acta (Submitted).

  108. Combs, C. K., Johnson, D. E., Karlo, J. C., Cannady, S. B., and Landreth, G. E. 2000. Inflammatory mechanisms in Alzheimer's disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPAR gamma agonists. J. Neurosci. 20:558-567.

    Google Scholar 

  109. Sutton, E. T., Thomas, T., Bryant, M. W., Landon, C. S., Newton, C. A., and Rhodin, J. A. 1999. Amyloid-beta peptide induced inflammatory reaction is mediated by the cytokines tumor necrosis factor and interleukin-1. J. Submicrosc. Cytol. Pathol. 31:313-323.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukiw, W.J., Bazan, N.G. Neuroinflammatory Signaling Upregulation in Alzheimer's Disease. Neurochem Res 25, 1173–1184 (2000). https://doi.org/10.1023/A:1007627725251

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007627725251

Navigation