Skip to main content
Log in

Inhibition of angiogenesis and tumor growth by murine 7E3, the parent antibodyof c7E3 Fab (abciximab; ReoProTM)

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Angiogenesis plays an essential role in the growth and dissemination of solid tumor cancers. The expression of endothelial cell integrin αvβ3 has been shown to increase during vascular proliferation associated with human tumors. Selective antagonists of αvβ3 can block angiogenesis and tumor growth by inducing programmed cell death in proliferating endothelial cells. Monoclonal antibody 7E3, an antagonist of the human, but not murine, integrins αvβ3 and αIIbβ3 (GPIIb/IIIa), inhibits platelet aggregation. It is the parent antibody of a mouse/human chimeric antibody fragment approved for adjunctive therapy of patients undergoing percutaneous coronary interventions to prevent ischemic complications (c7E3Fab; abciximab; ReoPro). To evaluate the potential of 7E3 to inhibit human angiogenesis and tumor growth independent of its antiplatelet effects, we established integrin αvβ3-negative human melanoma tumors in full-thickness human skin grafted onto SCID mice. The resulting tumors induce a human angiogenic response as assessed by the immunoreactivity of vascular cells with monoclonal antibodies specific for human CD31. Administration of 7E3 prevented or significantly inhibited the growth of tumors, and this effect correlated with a significant reduction in the number of blood vessels supplying the tumors. These results support the previous findings that blockade of integrin αvβ3 inhibits angiogenesis and tumor growth and indicates that dual inhibitors of αvβ3 and αIIbβ3 are effective in blocking tumor growth and angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: An imbalance of positive and negative regulation. Cell 1991; 64: 327.

    Article  PubMed  CAS  Google Scholar 

  2. Weinstat-Saslow D, Steeg PS. Angiogenesis and colonization in the tumor metastatic process: Basic and applied advances. FASEB J 1994; 8: 401.

    PubMed  CAS  Google Scholar 

  3. Blood CH, Zetter BR. Tumor interactions with the vasculature: Angiogenesis and tumor metastasis. Biochim Biophys Acta 1990; 1032: 89.

    PubMed  CAS  Google Scholar 

  4. Folkman J. The role of angiogenesis in tumor growth. Semin Cancer Biol 1992; 3: 65.

    PubMed  CAS  Google Scholar 

  5. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med 1991; 324: 1.

    Article  PubMed  CAS  Google Scholar 

  6. Vartanian RK, Weidner N. Correlation of intratumoral endothelial cell proliferation with microvessel density (tumor angiogenesis) and tumor cell proliferation in breast carcinoma. Am J Pathol 1994; 144: 1188.

    PubMed  CAS  Google Scholar 

  7. Weidner N, Folkman J, Pozza F et al. Tumor angiogenesis: A new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 1992; 84: 1875.

    PubMed  CAS  Google Scholar 

  8. Gasparini G, Weidner N, Bevilacqua P et al. Tumor microvessel density, p53 expression, tumor size, and peritumoral lymphatic vessel invasion are relevant prognostic markers in node-negative breast carcinoma. J Clin Oncol 1994; 12: 454.

    PubMed  CAS  Google Scholar 

  9. Gasparini G, Weidner N, Maluta S et al. Intratumoral microvessel density and p53 protein: Correlation with metastasis in head-and-neck squamous-cell carcinoma. Int J Cancer 1993; 55: 739.

    PubMed  CAS  Google Scholar 

  10. O'Reilly MS, Holmgren L, Shing Y et al. Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79: 315.

    Article  PubMed  Google Scholar 

  11. O'Reilly MS, Boehm T, Shing Y et al. Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88: 277.

    Article  PubMed  Google Scholar 

  12. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 1998; 279: 377.

    Article  PubMed  CAS  Google Scholar 

  13. Brooks PC, Montgomery AM, Rosenfeld M et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994; 79: 1157.

    Article  PubMed  CAS  Google Scholar 

  14. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 1994; 264: 569.

    PubMed  CAS  Google Scholar 

  15. Brooks PC, Stromblad S, Klemke R et al. Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 1995; 96: 1815.

    PubMed  CAS  Google Scholar 

  16. Friedlander M, Brooks PC, Shaffer RW et al. Definition of two angiogenic pathways by distinct alpha v integrins. Science 1995; 270: 1500.

    PubMed  CAS  Google Scholar 

  17. Brown LF, Berse B, Jackman RW et al. Increased expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in kidney and bladder carcinomas. Am J Pathol 1993; 143: 1255.

    PubMed  CAS  Google Scholar 

  18. Brown LF, Berse B, Jackman RW et al. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Hum Pathol 1995; 26: 86.

    Article  PubMed  CAS  Google Scholar 

  19. Leek RD, Harris AL, Lewis CE. Cytokine networks in solid human tumors: Regulation of angiogenesis. J Leukoc Biol 1994; 56: 423.

    PubMed  CAS  Google Scholar 

  20. Hatva E, Kaipainen A, Mentula P et al. Expression of endothelial cell-specific receptor tyrosine kinases and growth factors in human brain tumors. Am J Pathol 1995; 146: 368.

    PubMed  CAS  Google Scholar 

  21. Plate KH, Breier G, Weich HA, Risau W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 1992; 359: 845.

    Article  PubMed  CAS  Google Scholar 

  22. Smith DR, Polverini PJ, Kunkel SL et al. Inhibition of interleukin 8 attenuates angiogenesis in bronchogenic carcinoma. J Exp Med 1994; 179: 1409.

    Article  PubMed  CAS  Google Scholar 

  23. Kim KJ, Li B, Winer J et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993; 362: 841.

    Article  PubMed  CAS  Google Scholar 

  24. Enenstein J, Waleh NS, Kramer RH. Basic FGF and TGF-beta differentially modulate integrin expression of human microvascular endothelial cells. Exp Cell Res 1992; 203: 499.

    Article  PubMed  CAS  Google Scholar 

  25. Enenstein J, Kramer RH. Confocal microscopic analysis of integrin expression on the microvasculature and its sprouts in the neonatal foreskin. J Invest Dermatol 1994; 103: 381.

    Article  PubMed  CAS  Google Scholar 

  26. Sepp NT, Li LJ, Lee KH et al. Basic fibroblast growth factor increases expression of the alpha v beta 3 integrin complex on human microvascular endothelial cells. J Invest Dermatol 1994; 103: 295.

    Article  PubMed  CAS  Google Scholar 

  27. Stromblad S, Becker JC, Yebra M et al. Suppression of p53 activity and p21WAF1/CIP1 expression by vascular cell integrin alphaVbeta3 during angiogenesis. J Clin Invest 1996; 98: 426.

    PubMed  CAS  Google Scholar 

  28. Brooks PC, Stromblad S, Sanders LC et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 1996; 85: 683.

    Article  PubMed  CAS  Google Scholar 

  29. Brooks PC, Silletti S, von Schalscha TL et al. Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 1998; 92: 391.

    Article  PubMed  CAS  Google Scholar 

  30. Coller BS. A new murine monoclonal antibody reports an activation-dependent change in the conformation and/or microenvironment of the platelet GPIIb/IIIa complex. J Clin Invest 1985; 76: 101.

    PubMed  CAS  Google Scholar 

  31. Coller BS, Scudder LE, Beer J et al. Monoclonal antibodies to platelet GPIIb/IIIa as antithrombotic agents. Ann NY Acad Sci 1991; 614: 193.

    PubMed  CAS  Google Scholar 

  32. Coller BS. Platelet GPIIb/IIIa antagonists: The first anti-integrin receptor therapeutics. J Clin Invest 1997; 99: 1467.

    PubMed  CAS  Google Scholar 

  33. Coller BS, Cheresh DA, Asch E, Seligsohn U. Platelet vitronectin receptor expression differentiates Iraqi-Jewish from Arab patients with Glanzmann thrombasthenia in Israel. Blood 1991; 77: 75.

    PubMed  CAS  Google Scholar 

  34. Tam SH, Sassoli PM, Jordan RE, Nakada MT. Abciximab (ReoPro, chimeric 7E3 Fab) demonstrates equivalent affinity and functional blockade of GPIIb/IIIa and avb3 integrins. Circulation 1998; 98: 1086.

    Google Scholar 

  35. Newman PJ, McEver RP, Doers MP, Kunicki TJ. Synergistic action of two murine monoclonal antibodies that inhibit ADP-induced platelet aggregation without blocking fibrinogen binding. Blood 1987; 69: 668.

    PubMed  CAS  Google Scholar 

  36. Newman PJ. The biology of PECAM-1. J Clin Invest 1997; 99: 3.

    PubMed  CAS  Google Scholar 

  37. Felding-Habermann B, Mueller BM, Romerdahl CA, Cheresh DA. Involvement of integrin alpha V gene expression in human melanoma tumorigenicity. J Clin Invest 1992; 89: 2018.

    PubMed  CAS  Google Scholar 

  38. Friedlander M, Theesfeld CL, Sugita M et al. Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. Proc Natl Acad Sci USA 1996; 93: 9764.

    Article  PubMed  CAS  Google Scholar 

  39. The EPILOG Investigators. Platelet glycoprotein IIb/IIIa receptor blockade and low-dose heparin during percutaneous coronary revascularization. N Engl J Med 1997; 336: 1689.

    Article  Google Scholar 

  40. Karpatkin SE, Pearlstein C, Ambrogio C, Coller BS. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest 1987; 81: 1012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varner, J.A., Nakada, M.T., Jordan, R.E. et al. Inhibition of angiogenesis and tumor growth by murine 7E3, the parent antibodyof c7E3 Fab (abciximab; ReoProTM). Angiogenesis 3, 53–60 (1999). https://doi.org/10.1023/A:1009019223744

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009019223744

Navigation