Skip to main content
Log in

Genetically Engineered Mouse Models of Mammary Intraepithelial Neoplasia

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Foci of atypical mammary epithelium have been associated with breast cancer in many species including mouse and man. The advent of targeted genomics has led to the creation of numerous genetically engineered mice (GEM)5 which display focal atypical lesions associated with mammary cancer. Some early lesions in GEM have a remarkable morphological similarity to pre-cancers in humans. While the malignant potential of atypical foci have been thoroughly documented in the non-GEM by tissue transplantation, a review of the literature reveals that precursor lesions in GEM remain incompletely described and only partially documented. Their validation as appropriate models of human breast preneoplasia awaits classical transplantation studies. Here, we review the literature characterizing early lesions of GEM models of mammary cancer, discuss the principles of the Focality, Atypia, and Association and present an introduction of mammary transplantation for model Validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. T. Amundadottir, G. Merlino, and R. B. Dickson (1996). Transgenic mouse models of breast cancer. Breast Cancer Res. Treat. 39:119–135.

    Google Scholar 

  2. R. D. Cardiff, D. Ornitz, F. Lee, R. Moreadith, E. Sinn, W. Muller, and P. Leder (1992). MammaryMorphogenesis and Oncogenes. In R. L. Ceriani (ed.), Breast Cancer:Progress in Biology, Clinical Management and Prevention, pp. 41–45.

  3. R.D. Cardiff and W. J. Muller (1993). Transgenic mouse models of mammary tumorigenesis. Cancer Survey 16:97–113.

    Google Scholar 

  4. R. D. Cardiff (1995). Understanding transgenes in mammary tumorigenesis: Five Rules. J. Mam. Gland Biol. Neoplasia 1:61–73.

    Google Scholar 

  5. R. D. Cardiff and R. J. Munn (1995). Comparative pathology of mammary tumorigenesis in transgenic mice. Cancer Lett. 90:13–19.

    Google Scholar 

  6. R. D. Cardiff and R. J. Munn (1998). The histopathology of transgenes and knockouts in the mammary gland. In G. Heppner. (ed.), Breast Cancer, Advances in Oncobiology, JAI Press Inc., pp. 177–202.

  7. R. D. Cardiff and S. R. Wellings (1999). The comparative pathology of human and mouse mammary glands. J. Mam. Gland Biol. Neoplasia 4:105–122.

    Google Scholar 

  8. R.D. Cardiff, M.R. Anver, B.A. Gusterson, L. Hennighausen, R. A. Jensen, M. J. Merino, S. Rehm, J. Russo, F. A. Tavassoli, L. M. Wakefield, J. M. Ward, and J. E. Green (2000). The mammary pathology of genetically engineered mice: The consensus report and recommendations from the Annapolis meeting [see comments]. Oncogene 19:968–988.

    Google Scholar 

  9. D. L. Dankort and W. J. Muller (1996). Transgenic models of breast cancer metastasis. Cancer Treat. Res. 83:71–88.

    Google Scholar 

  10. D. Medina (1996). Preneoplasia in mammary tumorigenesis. Cancer Treat. Res. 83:37–69.

    Google Scholar 

  11. D. Medina (1996). The mammary gland: A unique organ for the study of development and tumorigenesis. J. Mam. Gland Biol. Neoplasia 1:5–19.

    Google Scholar 

  12. W. J. Muller (1991). Expression of activated oncogenes in the murine mammary gland: Transgenic models for human breast cancer. Cancer Metastasis Rev. 10:217–227.

    Google Scholar 

  13. R. Strange and R. D. Cardiff (1989). Transgenic animals and transgenic mammary glands. In M. A. Rich, J. C. Hager, and I. Kaydar (ed.), Breast Cancer: Progress in Biology, Clinical Management and Prevention, Kluwer Academic Publishers, Boston, Dordecht, London, pp. 1–14.

    Google Scholar 

  14. H. Varmus (1989). Transgenic mice and host cell mutants resistant to transformation as model systems for identifying multiple components in oncogenesis. Ciba Found Symp. 142:20–35.

    Google Scholar 

  15. M. A. Webster and W. J. Muller (1994). Mammary tumorigenesis and metastasis in transgenic mice. Semin Cancer Biol. 5:69–76.

    Google Scholar 

  16. R. D. Cardiff (1984). Protoneoplasia: The molecular biology of murine mammary hyperplasia. Adv. Cancer Res. 42:167–190.

    Google Scholar 

  17. S. A. Halter, P. Dempsey, Y. Matsui, M. K. Stokes, R. Graves-Deal, B. L. Hogan, and R. J. Coffey (1992). Distinctive patterns of hyperplasia in transgenic mice with mouse mammary tumor virus transforming growth factor-alpha. Characterization of mammary gland and skin proliferations. Amer. J. Pathol. 140:1131–1146.

    Google Scholar 

  18. W. D. Dupont and D. L. Page (1985). Risk factors for breast cancer in women with proliferative breast disease. N. Engl. J. Med. 312:146–151.

    Google Scholar 

  19. D. L. Page, W. D. Dupont, and L. W. Rogers (1986). Breast cancer risk of lobular-based hyperplasia after biopsy: “Ductal” pattern lesions. Cancer Detect Prev. 9:441–448.

    Google Scholar 

  20. D. L. Page, W.D. Dupont, L.W. Rogers, R.A. Jensen, and P. A. Schuyler (1995). Continued local recurrence of carcinoma 15–25 years after a diagnosis of low grade ductal carcinoma in situ of the breast treated only by biopsy. Cancer 76:1197–1200.

    Google Scholar 

  21. D. L. Page, R. A. Jensen, and J. F. Simpson (1998). Premalignant and malignant disease of the breast: The roles of the pathologist. Mod. Pathol. 11:120–128.

    Google Scholar 

  22. F. A. Tavassoli (1998). Ductal carcinoma in situ: Introduction of the concept of ductal intraepithelial neoplasia. Mod.Pathol. 11:140–154.

    Google Scholar 

  23. F. A. Tavassoli and H. J. Norris (1990). Acomparison of the results of long-term follow-up for atypical intraductal hyperplasia and intraductal hyperplasia of the breast. Cancer 65:518–529.

    Google Scholar 

  24. S. R. Wellings (1980). A hypothesis of the origin of human breast cancer from the terminal ductal lobular unit. Pathol. Res. Pract. 166:515–535.

    Google Scholar 

  25. S. R. Wellings and J. N. Wolfe (1978). Correlative studies of the histological and radiographic appearance of the breast parenchyma. Radiology 129:299–306.

    Google Scholar 

  26. H. M. Jensen, J. R. Rice, and S. R. Wellings (1976). Preneoplastic lesions in the human breast. Science 191:295–297.

    Google Scholar 

  27. N. Neznanov, A. K. Man, H. Yamamoto, C. A. Hauser, R. D. Cardiff, and R.G. Oshima (1999). Asingle targeted Ets2 allele restricts development of mammary tumors in transgenic mice. Cancer Res. 59:4242–4246.

    Google Scholar 

  28. S. Nandi and C. M. McGrath (1973). Mammary neoplasia in mice. Adv. Cancer Res. 17:353–414.

    Google Scholar 

  29. D.W. Morris, P.A. Barry, H.D. Bradshaw, Jr., and R.D. Cardiff (1990). Insertion mutation of the int-1 and int-2 loci by mouse mammary tumor virus in premalignant and malignant neoplasms from the GR mouse strain. J. Virol. 64:1794–1802.

    Google Scholar 

  30. R. D. Cardiff, S. R. Wellings, and L. J. Faulkin (1977). Biology of breast preneoplasia. Cancer 39:2734–2746.

    Google Scholar 

  31. D. Medina (1988). The preneoplastic state in mouse mammary tumorigenesis. Carcinogenesis 9:1113–1119.

    Google Scholar 

  32. S. Rehm and A. G. Liebelt (1996). Nononeoplastic and neoplastic lesions of the mammary gland. In U. Mohr, D. L. Dungworth, C. C. Capen, W. W. Carlton, J. P. Sundberg, and J. M. Ward (eds), Pathobiology of the Aging Mouse (Vol. 2). ILSI Press, Washington D.C., pp. 381–398.

    Google Scholar 

  33. T. A. Stewart, P. K. Pattengale, and P. Leder (1984). Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38:627–637.

    Google Scholar 

  34. A. C. Andres, M. A. van der Valk, C. A. Schonenberger, F. Fluckiger, M. LeMeur, P. Gerlinger, and B. Groner (1988). Ha-ras and c-myc oncogene expression interferes with morphological and functional differentiation of mammary epithelial cells in single and double transgenic mice. Genes Dev. 2:1486–1495.

    Google Scholar 

  35. A. S. Tsukamoto, R. Grosschedl, R. C. Guzman, T. Parslow, and H. E. Varmus (1988). Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55:619–625.

    Google Scholar 

  36. W. J. Muller, E. Sinn, P. K. Pattengale, R. Wallace, and P. Leder (1988). Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54:105–115.

    Google Scholar 

  37. L. Bouchard, L. Lamarre, P. J. Tremblay, and P. Jolicoeur (1989). Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell 57:931–936.

    Google Scholar 

  38. M. A. Shibata, I. G. Maroulakou, C. L. Jorcyk, L. G. Gold, J. M. Ward, and J. E. Green (1996). p53-independent apoptosis during mammary tumor progression in C3(1)/SV40 large T antigen transgenic mice: Suppression of apoptosis during the transition from preneoplasia to carcinoma. Cancer Res. 56:2998–3003.

    Google Scholar 

  39. M. A. Shibata, M. L. Liu, M. C. Knudson, E. Shibata, K. Yoshidome, T. Bandey, S. J. Korsmeyer, and J. E. Green (1999). Haploid loss of bax leads to accelerated mammary tumor development in C3(1)/SV40-TAg transgenic mice: Reduction in protective apoptotic response at the preneoplastic stage. EMBO J. 18:2692–2701.

    Google Scholar 

  40. T. P. Lin, R. C. Guzman, R. C. Osborn, G. Thordarson, and S. Nandi (1992). Role of endocrine, autocrine, and paracrine interactions in the development of mammary hyperplasia in Wnt-1 transgenic mice. Cancer Res. 52:4413–4419.

    Google Scholar 

  41. G. H. Smith, R. Sharp, E. C. Kordon, C. Jhappan, and G. Merlino (1995). Transforming growth factor-alpha promotes mammary tumorigenesis through selective survival and growth of secretory epithelial cells. Amer. J. Pathol. 147: 1081–1096.

    Google Scholar 

  42. L. T. Amundadottir, M. D. Johnson, G. Merlino, G. H. Smith, and R.B. Dickson (1995). Synergistic interaction of transforming growth factor alpha and c-myc in mouse mammary and salivary gland tumorigenesis. Cell Growth Differ. 6:737–748.

    Google Scholar 

  43. E. P. Sandgren, J. A. Schroeder, T. H. Qui, R. D. Palmiter, R. L. Brinster, and D. C. Lee (1995). Inhibition of mammary gland involution is associated with transforming growth factor alpha but not c-myc-induced tumorigenesis in transgenic mice. Cancer Res. 55:3915–3927.

    Google Scholar 

  44. F. S. Lee, T. F. Lane, A. Kuo, G. M. Shackleford, and P. Leder (1995). Insertional mutagenesis identifies a member of the Wnt gene family as a candidate oncogene in the mammary epithelium of int-2/Fgf-3 transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 92:2268–2273.

    Google Scholar 

  45. E. R. Andrechek, W. R. Hardy, P. M. Siegel, M. A. Rudnicki, R. D. Cardiff, and W. J. Muller (2000). Amplification of the neu/erbB-2 oncogene in a novel mouse model of mammary tumorigenesis. Proc. Natl. Acad. Sci. U.S.A. 97: 3444–3449.

    Google Scholar 

  46. X. Xu, K. U. Wagner, D. Larson, Z. Weaver, C. Li, T. Ried, L. Hennighausen, A. Wynshaw-Boris, and C. X. Deng (1999). Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumor formation [see comments]. Nat. Genet. 22:37–43.

    Google Scholar 

  47. C. X. Deng and F. Scott (2000). Role of the tumor suppressor gene Brca1 in genetic stability and mammary gland tumor formation. Oncogene 19:1059–1064.

    Google Scholar 

  48. M. Taketo, A. C. Schroeder, L. E. Mobraaten, K. B. Gunning, G. Hanten, R. R. Fox, T. H. Roderick, C. L. Stewart, F. Lilly, C. T. Hansen, and P. A. Overbeek (1991). FVB/N: An inbred mouse strain preferable for transgenic analyses. Proc. Natl. Acad. Sci. U.S.A. 88:2065–2069.

    Google Scholar 

  49. T. Lifsted, T. Le Voyer, M. Williams, W. Muller, A. Klein-Szanto, K.H. Buetow, and K.W. Hunter (1998). Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int. J. Cancer. 77:640–644.

    Google Scholar 

  50. J. F. Mahler, W. Stokes, P. C. Mann, M. Takaoka, and R. R. Maronpot (1996). Spontaneous lesions in aging FVB//N mice. Toxicol. Pathol. 24:710–716.

    Google Scholar 

  51. M. D. Mediavilla, A. Guezmez, S. Ramos, L. Kothari, F. Garijo, and E. J. Sanchez Barcelo (1997). Effects of melatonin on mammary gland lesions in transgenic mice overexpressing N-ras protooncogene. J. Pineal. Res. 22:86–94.

    Google Scholar 

  52. D. M. Ornitz, R. W. Moreadith, and P. Leder (1991). Binary system for regulating transgene expression in mice: Targeting int-2 gene expression with yeastGAL4/UAScontrol elements. Proc. Natl. Acad. Sci. U.S.A. 88:698–702.

    Google Scholar 

  53. D. I. Kitsberg and P. Leder (1996). Keratinocyte growth factor induces mammary and prostatic hyperplasia and mammary adenocarcinoma in transgenic mice. Oncogene 13:2507–2515.

    Google Scholar 

  54. R. D. Cardiff, E. Sinn, W. Muller, and P. Leder (1991). Transgenic oncogenic mice: Tumor phenotype predicts genotype. Amer. J. Pathol. 139:495–501.

    Google Scholar 

  55. T. F. Lane and P. Leder (1997). Wnt-10b directs hypermorphic development and transformation in mammary glands of male and female mice. Oncogene 15:2133–2144.

    Google Scholar 

  56. E. Di Carlo, M. G. Diodoro, K. Boggio, A. Modesti, M. Modesti, P. Nanni, G. Forni, and P. Musiani (1999). Analysis of mammary carcinoma onset and progression in HER-2/neu oncogene transgenic mice reveals a lobular origin. Lab. Invest. 79:1261–1269.

    Google Scholar 

  57. C. T. Guy, M. A. Webster, M. Schaller, T. J. Parsons, R. D. Cardiff, and W. J. Muller (1992). Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc. Natl. Acad. Sci. U.S.A. 89:10578–10582.

    Google Scholar 

  58. C. T. Guy, R. D. Cardiff, and W. J. Muller (1996). Activated neu induces rapid tumor progression. J. Biol. Chem. 271:7673–7678.

    Google Scholar 

  59. C. T. Guy, S. K. Muthuswamy, R. D. Cardiff, P. Soriano, and W. J. Muller (1994). Activation of the c-Src tyrosine kinase is required for the induction of mammary tumors in transgenic mice. Genes Dev. 8:23–32.

    Google Scholar 

  60. C. T. Guy, R. D. Cardiff, and W. J. Muller (1992). Induction of mammary tumors by expression of polyomavirus middle T oncogene: A transgenic mouse model for metastatic disease. Mol. Cell Biol. 12:954–961.

    Google Scholar 

  61. B. R. Davies, A. M. Platt-Higgins, G. Schmidt, and P. S. Rudland (1999). Development of hyperplasias, preneoplasias, and mammary tumors in MMTV-c-erbB-2 and MMTVTGFalpha transgenic rats. Amer. J. Pathol. 155:303–314.

    Google Scholar 

  62. M. A. Webster, J. N. Hutchinson, M. J. Rauh, S. K. Muthuswamy, M. Anton, C. G. Tortorice, R. D. Cardiff, F. L. Graham, J. A. Hassell, and W. J. Muller (1998). Requirement for both Shc and phosphatidylinositol 30 kinase signaling pathways in polyomavirus middle T-mediated mammary tumorigenesis. Mol. Cell Biol. 18:2344–2359.

    Google Scholar 

  63. M. J. Rauh, V. Blackmore, E. R. Andrechek, C. G. Tortorice, R. Daly, V. K. Lai, T. Pawson, R. D. Cardiff, P. M. Siegel, and W. J. Muller (1999). Accelerated mammary tumor development in mutant polyomavirus middle T transgenic mice expressing elevated levels of either the Shc or Grb2 adapter protein. Mol. Cell Biol. 19:8169–8179.

    Google Scholar 

  64. N. Tulchin, F. S. Lee, L. Ornstein, J. Strauchen, and R. D. Cardiff (1995). c-myc protein distribution: Mammary adenocarcinomas ofMTV/MYCtransgenic mice. Int. J. Oncol. 7:5–9.

    Google Scholar 

  65. E. P. Sandgren, N. C. Luetteke, R. D. Palmiter, R. L. Brinster, and D. C. Lee (1990). Overexpression of TGF alpha in transgenic mice: Induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast. Cell 61:1121–1135.

    Google Scholar 

  66. Y. Matsui, S. A. Halter, J. T. Holt, B. L. Hogan, and R. J. Coffey (1990). Development of mammary hyperplasia and neoplasia inMMTV-TGF alpha transgenic mice. Cell 61:1147–1155.

    Google Scholar 

  67. K. Deckard-Jantapour, W. J. Muller, L. Chodosh, H. P. Gardner, S. T. Marquis, R. J. Coffey, and R. D. Cardiff (1997). Differential expression of the neu transgene in murine mammary tissues. Int. J. Oncol. 11:235–244.

    Google Scholar 

  68. M. P. DiGiovanna, M. A. Lerman, R. J. Coffey, W. J. Muller, R. D. Cardiff, and D. F. Stern (1998). Active signaling by neu in transgenic mice. Oncogene 17:1877–1884.

    Google Scholar 

  69. W. J. Muller, C. L. Arteaga, S. K. Muthuswamy, P. M. Siegel, M. A. Webster, R. D. Cardiff, K. S. Meise, F. Li, S. A. Halter, and R. J. Coffey (1996). Synergistic interaction of the Neu proto-oncogene product and transforming growth factor alpha in the mammary epithelium of transgenic mice. Mol. Cell Biol. 16:5726–5736.

    Google Scholar 

  70. G. E. Green, M.-A. Shibata, K. Yoshidome, M.-L. Liu, C. Jorcyk, M. R. Anver, J. Wigginton, R. Wiltrout, E. Shibata, S. Kaczmarczyk, W. Wang, A.-Y. Liu, A. Calvo, and C. Couldrey (2000). The C2(1)/SV40-Tantigen transgenic mouse model of mammary cancer: Ductal epithelial cell targeting with multistage progression to carcinoma. Oncogene 19:1020–1027.

    Google Scholar 

  71. C. Schulze-Garg, J. Lohler, A. Gocht, and W. Deppert (2000). A transgenic mouse model for the ductal carcinoma in situ (DCIS) of the mammary gland. Oncogene 19:1028–1037.

    Google Scholar 

  72. A. C. Andres, C. A. Schonenberger, B. Groner, L. Henninghausen, M. LeMeur, and P. Gerlinger (1987). Ha-ras oncogene expression directed by a milk protein gene promoter: Tissue specificity, hormonal regulation, and tumor induction in transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 84:1299–1303.

    Google Scholar 

  73. R. G. Marcum and S. R. Wellings (1969). Subgross pathology of the human breast: Method and initial observations. J. Natl. Cancer Inst. 42:115–121.

    Google Scholar 

  74. S. R. Wellings, H. M. Jensen, and R. G. Marcum (1975). An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J. Natl. Cancer Inst. 55:231–273.

    Google Scholar 

  75. S. R. Wellings, H. M. Jensen, and M. R. DeVault (1976). Persistent and atypical lobules in the human breast may be precancerous. Experientia 32:1463–1465.

    Google Scholar 

  76. R. Sarnelli and F. Squartini (1993). The prevalence of the precancerous lesions in breasts contralateral to clinical cancer. A morphological comparison with breasts containing a benign lump. Clin. Exp. Obstet. Gynecol. 20:37–42.

    Google Scholar 

  77. S. R. Wellings and H. M. Jensen (1973). On the origin and progression of ductal carcinoma in the human breast. J. Natl. Cancer Inst. 50:1111–1118.

    Google Scholar 

  78. S. R. Wellings (1980). Development of human breast cancer. Adv. Cancer Res. 31:287–314.

    Google Scholar 

  79. S. R. Wellings and C. E. Alpers (1987). Apocrine cystic metaplasia: Subgross pathology and prevalence in cancer— associated versus random autopsy breasts. Human Pathol. 18:381–386.

    Google Scholar 

  80. H. M. Jensen and S. R. Wellings (1976). Preneoplastic lesions of the human mammary gland transplanted into the nude athymic mouse. Cancer Res. 36:2605–2610.

    Google Scholar 

  81. W. J. Muller, J. Ho, and P. M. Siegel (1998). Oncogenic activation of Neu/ErbB-2 in a transgenic mouse model for breast cancer. Biochem. Soc. Symp. 63:149–157.

    Google Scholar 

  82. H. Kwan, V. Pecenka, A. Tsukamoto, T. G. Parslow, R. Guzman, T. P. Lin, W. J. Muller, F. S. Lee, P. Leder, and H. E. Varmus (1992). Transgenes expressing the Wnt-1 and int-2 proto-oncogenes cooperate during mammary carcinogenesis in doubly transgenic mice. Mol. Cell Biol. 12:147–154.

    Google Scholar 

  83. W. J. Muller, F. S. Lee, C. Dickson, G. Peters, P. Pattengale, and P. Leder (1990). The int-2 gene product acts as an epithelial growth factor in transgenic mice. EMBO J. 9:907–913.

    Google Scholar 

  84. G. Stamp, V. Fantl, R. Poulsom, S. Jamieson, R. Smith, G. Peters, and C. Dickson (1992). Nonuniform expression of a mouse mammary tumor virus-driven int-2/Fgf-3 transgene in pregnancy-responsive breast tumors. Cell Growth Differ. 3:929–938.

    Google Scholar 

  85. D. M. Ornitz, R. D. Cardiff, A. Kuo, and P. Leder (1992). Int-2, an autocrine and/or ultra-short-range effector in transgenic mammary tissue transplants. J. Natl. Cancer Inst. 84:887–892.

    Google Scholar 

  86. D. Daphna-Iken, D. B. Shankar, A. Lawshe, D. M. Ornitz, G. M. Shackleford, and C. A. MacArthur (1998).MMTV-Fgf8 transgenic mice develop mammary and salivary gland neoplasia and ovarian stromal hyperplasia. Oncogene 17:2711–2717.

    Google Scholar 

  87. D. S. Strayer, S. Yang, and M. S. Schwartz (1993). Epidermal growth factor-like growth factors. I. Breast malignancies and other epithelial proliferations in transgenic mice. Lab. Invest. 69:660–673.

    Google Scholar 

  88. I. M. Krane and P. Leder (1996). NDF/heregulin induces persistence of terminal end buds and adenocarcinomas in the mammary glands of transgenic mice. Oncogene 12:1781–1788.

    Google Scholar 

  89. R. C. Humphreys and L. Hennighausen (1999). Signal transducer and activator of transcription 5a influences mammary epithelial cell survival and tumorigenesis [In Process Citation]. Cell Growth Differ. 10:685–694.

    Google Scholar 

  90. C. C. Niemeyer, B. Spencer-Dene, J. X. Wu, and E. D. Adamson (1999). Preneoplastic mammary tumor markers: Cripto and amphiregulin are overexpressed in hyperplastic stages of tumor progression in transgenic mice. Int. J. Cancer 81:588–591.

    Google Scholar 

  91. C. Tomasetto, C. Wolf, M. C. Rio, M. Mehtali, M. LeMeur, P. Gerlinger, P. Chambon, and R. Lathe (1989). Breast cancer protein PS2 synthesis in mammary gland of transgenic mice and secretion into milk. Mol. Endocrinol. 3:1579–1584.

    Google Scholar 

  92. C. Jhappan, C. Stahle, R. N. Harkins, N. Fausto, G. H. Smith, and G. T. Merlino (1990). TGF alpha overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas. Cell 61:1137–1146.

    Google Scholar 

  93. A. E. Gorska, H. Joseph, R. Derynck, H. L. Moses, and R. Serra (1998). Dominant-negative interference of the transforming growth factor beta type II receptor in mammary gland epithelium results in alveolar hyperplasia and differentiation in virgin mice. Cell Growth Differ. 9:229–238.

    Google Scholar 

  94. K. Boggio, G. Nicoletti, E. Di Carlo, F. Cavallo, L. Landuzzi, C. Melani, M. Giovarelli, I. Rossi, P. Nanni, C. De Giovanni, P. Bouchard, S. Wolf, A. Modesti, P. Musiani, P. L. Lollini, M. P. Colombo, and G. Forni (1998). Interleukin 12-mediated prevention of spontaneous mammary adenocarcinomas in two lines of Her-2/neu transgenic mice. J. Exp. Med. 188:589–596.

    Google Scholar 

  95. P. M. Siegel, E. D. Ryan, R. D. Cardiff, and W. J. Muller (1999). Elevated expression of activated forms of Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary tumors in transgenic mice: Implications forhumanbreast cancer. EMBO J. 18:2149–2164.

    Google Scholar 

  96. L. A. Rudolph-Owen, R. Chan, W. J. Muller, and L. M. Matrisian (1998). The matrix metalloproteinase matrilysin influences early-stage mammary tumorigenesis. Cancer Res. 58:5500–5506.

    Google Scholar 

  97. P. M. Siegel, D. L. Dankort, W. R. Hardy, and W. J. Muller (1994). Novel activating mutations in the neu proto-oncogene involved in induction of mammary tumors. Mol. Cell Biol. 14:7068–7077.

    Google Scholar 

  98. T. J. Liang, A. E. Reid, R. Xavier, R. D. Cardiff, and T. C. Wang (1996). Transgenic expression of tpr-met oncogene leads to development of mammary hyperplasia and tumors. J. Clin. Invest. 97:2872–2877.

    Google Scholar 

  99. G. Portella, D. Salvatore, G. Botti, A. Cerrato, L. Zhang, A. Mineo, G. Chiappetta, G. Santelli, L. Pozzi, G. Vecchio, A. Fusco, and M. Santoro (1996). Development of mammary and cutaneous gland tumors in transgenic mice carrying the RET/PTC1 oncogene. Oncogene 13:2021–2026.

    Google Scholar 

  100. T. Iwamoto, M. Takahashi, M. Ito, M. Hamaguchi, K. Isobe, N. Misawa, J. Asai, T. Yoshida, and I. Nakashima (1990). Oncogenicity of the ret transforming gene in MMTV/ret transgenic mice. Oncogene 5:535–542.

    Google Scholar 

  101. C. Jhappan, D. Gallahan, C. Stahle, E. Chu, G. H. Smith, G. Merlino, and R. Callahan (1992). Expression of an activated Notch-related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes Dev. 6:345–355.

    Google Scholar 

  102. D. Gallahan, C. Jhappan, G. Robinson, L. Hennighausen, R. Sharp, E. Kordon, R. Callahan, G. Merlino, and G. H. Smith (1996). Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Res. 56:1775–1785.

    Google Scholar 

  103. K. F. Chooi, D. A. Carter, S. Biswas, S. L. Lightman, M. Y. Ho, and D. Murphy (1994). Ectopic vasopressin expression in MMTV-Wnt-1 transgenic mice modifies mammary tumor differentiation and pathology. Cancer Res. 54:6434–6440.

    Google Scholar 

  104. W. P. Bocchinfuso, W. P. Hively, J. F. Couse, H. E. Varmus, and K. S. Korach (1999). A mouse mammary tumor virus-Wnt-1 transgene induces mammary gland hyperplasia and tumorigenesis in mice lacking estrogen receptor-alpha. Cancer Res. 59:1869–1876.

    Google Scholar 

  105. P. J. Tremblay, F. Pothier, T. Hoang, G. Tremblay, S. Brownstein, A. Liszauer, and P. Jolicoeur (1989). Transgenic mice carrying the mouse mammary tumor virus ras fusion gene: Distinct effects in various tissues. Mol. Cell Biol. 9:854–859.

    Google Scholar 

  106. E. Sinn, W. Muller, P. Pattengale, I. Tepler, R. Wallace, and P. Leder (1987). Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: Synergistic action of oncogenes in vivo. Cell 49:465–475.

    Google Scholar 

  107. R. Mangues, I. Seidman, A. Pellicer, and J.W. Gordon (1990). Tumorigenesis and male sterility in transgenic mice expressing a MMTV/N-ras oncogene. Oncogene 5:1491–1497.

    Google Scholar 

  108. M. A. Webster, R. D. Cardiff, and W. J. Muller (1995). Induction of mammary epithelial hyperplasias and mammary tumors in transgenic mice expressing a murine mammary tumor virus/activated c-src fusion gene. Proc. Natl. Acad. Sci. U.S.A. 92:7849–7853.

    Google Scholar 

  109. A. Elson (1999). Protein tyrosine phosphatase epsilon increases the risk of mammary hyperplasia and mammary tumors in transgenic mice [In Process Citation]. Oncogene 18:7535–7542.

    Google Scholar 

  110. S. J. McCormack, Z. Weaver, S. Deming, G. Natarajan, J. Torri, M. D. Johnson, M. Liyanage, T. Ried, and R. B. Dickson (1998). Myc/p53 interactions in transgenic mouse mammary development, tumorigenesis and chromosomal instability. Oncogene 16:2755–2766.

    Google Scholar 

  111. A. Leder, P.K. Pattengale, A. Kuo, T.A. Stewart, and P. Leder (1986). Consequences of widespread deregulation of the c-myc gene in transgenic mice: Multiple neoplasms and normal development. Cell 45:485–495.

    Google Scholar 

  112. C. A. Schoenenberger, A. C. Andres, B. Groner, M. van der Valk, M. LeMeur, and P. Gerlinger (1988). Targeted c-myc gene expression in mammary glands of transgenic mice induces mammary tumours with constitutive milk protein gene transcription. EMBO J. 7:169–175.

    Google Scholar 

  113. D. M. Bortner, and M. P. Rosenberg (1995). Overexpression of cyclin A in the mammary glands of transgenic mice results in the induction of nuclear abnormalities and increased apoptosis. Cell Growth Differ. 6:1579–1589.

    Google Scholar 

  114. T. C. Wang, R. D. Cardiff, L. Zukerberg, E. Lees, A. Arnold, and E. V. Schmidt (1994). Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369:669–671.

    Google Scholar 

  115. D. M. Bortner and M. P. Rosenberg (1997). Induction of mammary gland hyperplasia and carcinomas in transgenic mice expressing human cyclin E. Mol. Cell Biol. 17:453–459.

    Google Scholar 

  116. Y. J. Tzeng, E. Guhl, M. Graessmann, and A. Graessmann (1993). Breast cancer formation in transgenic animals induced by the whey acidic protein SV40 T antigen (WAP-SV-T) hybrid gene. Oncogene 8:1965–1971.

    Google Scholar 

  117. I. G. Maroulakou, M. Anver, L. Garrett, and J. E. Green (1994). Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene. Proc. Natl. Acad. Sci. U.S.A. 91:11236–11240.

    Google Scholar 

  118. R. R. Tekmal, N. Ramachandra, S. Gubba, V. R. Durgam, J. Mantione, K. Toda, Y. Shizuta, and D. L. Dillehay (1996). Overexpression of int-5/aromatase in mammary glands of transgenic mice results in the induction of hyperplasia and nuclear abnormalities. Cancer Res. 56:3180–3185.

    Google Scholar 

  119. M. D. Sternlicht, A. Lochter, C. J. Sympson, B. Huey, J. P. Rougier, J. W. Gray, D. Pinkel, M. J. Bissell, and Z. Werb (1999). The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98:137–146.

    Google Scholar 

  120. C. J. Sympson, R. S. Talhouk, C. M. Alexander, J. R. Chin, S. M. Clift, M. J. Bissell, and Z. Werb (1994). Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression [published erratum appears in J. Cell Biol. 132(4):following 752 (1996)]. J. Cell Biol. 125:681–693.

    Google Scholar 

  121. E. Stocklin, F. Botteri, and B. Groner (1993). An activated allele of the c-erbB-2 oncogene impairs kidney and lung function and causes early death of transgenic mice. J. Cell Biol. 122:199–208.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardiff, R.D., Moghanaki, D. & Jensen, R.A. Genetically Engineered Mouse Models of Mammary Intraepithelial Neoplasia. J Mammary Gland Biol Neoplasia 5, 421–437 (2000). https://doi.org/10.1023/A:1009534129331

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009534129331

Navigation