Skip to main content
Log in

Growth Regulatory Factors and Bone

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Oursler MJ. Osteoclast synthesis and secretion and activation of latent transforming growth factor beta. J Bone Miner Res 1994;9:443-452.

    Google Scholar 

  2. Hauschka PV, Mavrakos AE, Iafrati MD, Doleman SE, Klagsbrun M. Growth factors in bone matrix. J Biol Chem 1986;261:12665-12674.

    Google Scholar 

  3. Pfeilschifter J, Mundy GR. Modulation of transforming growth factor beta activity in bone cultures by osteotropic hormones. Proc Natl Acad Sci USA 1987;84:2024-2028.

    Google Scholar 

  4. Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Weiser R, Massague J, Mundy GR, Guise TA. TGFβ signaling blockade inhibits parathyroid hormone-related protein (PTHrP) secretion by breast cancer cells and bone metastasis development. J Clin Invest 1999;103:197-206.

    Google Scholar 

  5. Paget S. The distribution of secondary growth in cancer of the breast. Lancet 1889;1:571-573.

    Google Scholar 

  6. Marcelli C, Yates AJP, Mundy GR. In vivo effects of human recombinant transforming growth factor beta on bone turnover in normal mice. J Bone Miner Res 1990;5:1087-1096.

    Google Scholar 

  7. Noda M, Camilliere JJ. In vivo stimulation of bone formation by transforming growth factor-β. Endocrinology 1989;124:2991-2994.

    Google Scholar 

  8. Mackie EJ, Trechsel U. Stimulation of bone formation in vivo by transforming growth factor β-remodeling of woven bone and lack of inhibition by indomethacin. Bone 1990;11:295-300.

    Google Scholar 

  9. Pfeilschifter J, Bonewald L, Mundy GR. The role of growth factors in cartilage and bone metabolism. In: Handbook of experimental pharmacology: Peptide growth factors and their receptors. Heidelberg, Springer Verlag, 1990;371-400.

    Google Scholar 

  10. Pfeilschifter J, Wolf O, Naumann A, Minne HW, Mundy GR, Ziegler R. Chemotactic response of osteoblast-like cells to transforming growth factor β. J Bone Miner Res 1990;5:825-830.

    Google Scholar 

  11. Erlebacher A, Derynck R. Increased expression of TGFβ 2 in osteoblasts results in an osteoporosis-like phenotype. J Cell Biol 1996;132:195-210.

    Google Scholar 

  12. Pfeilschifter JP, Seyedin S, Mundy GR. Transforming growth factor β inhibits bone resorption in fetal rat long bone cultures. J Clin Invest 1988;82:680-685.

    Google Scholar 

  13. Chenu C, Pfeilschifter J, Mundy GR, Roodman GD. Transforming growth factor beta inhibits formation of osteoclast-like cells in long-term human marrow cultures. Proc Natl Acad Sci USA 1988;85:5683-5687.

    Google Scholar 

  14. Hughes DE, Tiffee JC, Li HH, Mundy GR, Boyce BF. Estrogen promotes apoptosis of murine osteoclasts-mediated by TGFβ. Nature Med 1996;7:1132-1136.

    Google Scholar 

  15. Massague J. TGFβ signal transduction. Ann Rev Biochem 1998;67:753-791.

    Google Scholar 

  16. Derynck R, Feng XH. TGFβ receptor signaling. Biochim Biophys Acta 1997;24:F105-F150.

    Google Scholar 

  17. Miyazono K. TGFβ receptors and signal transduction. Int J Hematol 1997;65:97-104.

    Google Scholar 

  18. Taipale J, Saharinen J, Keski-Oja J. Advances in Cancer Research, Academic Press, 1998;75:87-134.

    Google Scholar 

  19. Dallas SL, Miiyazono K, Skerry TM, Mundy GR, Bonewald LF. Dual role for the latent TGFβ binding protein (LTBP) in storage of latent TGFβ in the extracellular matrix and as a structural matrix protein. J Cell Biol 1995;131:539-549.

    Google Scholar 

  20. Taipale J, Miyazono K, Heldin CH, Keski-Oja J. Latent transforming growth factor β1 associates to fibroblast extracellular matrix via latent TGFβ binding protein. J Cell Biol 1994;124:171-181.

    Google Scholar 

  21. Taipale J, Lohi J, Saharinen J, Kovanen PT, Keski-Oja J. Human mast cell chymase and leukocyte elastase release latent transforming growth factor β1 from the extracellular matrix of cultured human epithelial and endothelial cells. J Biol Chem 1995;270:4689-4696.

    Google Scholar 

  22. Hamilton JA, Lingelbach S, Partridge NC, Martin, TJ. Regulation of plasminogen activator production by bone-resorbing hormones in normal and malignant osteoblasts. Endocrinology 1985;116:2186-2191.

    Google Scholar 

  23. Rodan SB, Wesolowski G, Thomas K, Rodan GA. Growth stimulation of rat calvaria osteoblastic cells by acidic fibroblast growth factor. Endocrinology 1987;121:1917-1923.

    Google Scholar 

  24. Globus RK, Patterson-Buckendahl P, Gospodarowicz D. Regulation of bovine bone cell proliferation by fibroblast growth factor and transforming growth factor alpha. Endocrinology 1988;123:98-105.

    Google Scholar 

  25. Rodan SB, Wesolowski G, Thomas KA, Yoon K, Rodan GA. Effects of acidic and basic fibroblast growth factors on osteoblastic cells. Connect Tissue Res 1989;20:283-288.

    Google Scholar 

  26. Dunstan CR, Boyce R, Boyce BF, Garrett IR, Izbicka E, Adams R, Burgess WH, Mundy GR. Systemic administration of acidic fibroblast growth factor (FGF-1) prevents bone loss and increases new bone formation in ovariectomized rats. J Bone Miner Res 1999;14:953-959.

    Google Scholar 

  27. Jackson A, Friedman S, Zhan X, Engleka KA, Forough R, Maciag T. Heat shock induces the release of fibroblast growth factor-1 from NIH 3T3 cells. Proc Natl Acad Sci USA 1992;89:10691-10695.

    Google Scholar 

  28. Mason IJ. The ins and outs of fibroblast growth factors. Cell 1994;78:547-552.

    Google Scholar 

  29. Klagsbrun M, Baird A. A dual receptor system is required for basic fibroblast growth factor activity. Cell 1991;67:229-231.

    Google Scholar 

  30. Givol D, Yayon A. Complexity of FGF receptors-genetic basis for structural diversity and functional specificity. FASEB J 1992;6:3362-3369.

    Google Scholar 

  31. Johnson DE, Williams LT. Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res 1993;60:1-41.

    Google Scholar 

  32. Acland P, Dixon M, Peters G, Dickson C. Subcellular fate of the int-2 oncoprotein is determined by choice of initiation codon. Nature 1990;343:662-665.

    Google Scholar 

  33. Powell PP, Klagsbrun M. Three forms of rat basic fibroblast growth factor are made from a single mRNA and localize to the nucleus. J Cell Physiol 1991;148:202-210.

    Google Scholar 

  34. Globus RK, Plouet J, Gospodarowicz D. Cultured bovine bone cells synthesize basic fibroblast growth factor and store it in their extracellular matrix. Endocrinology 1989;124:1539-1547.

    Google Scholar 

  35. Vlodavsky I, Folkman J, Sullivan R, Fridman R, Ishai-Michaeli R, Sasse J, Klagsbrun M. Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc Natl Acad Sci USA 1987;84:2292-2296.

    Google Scholar 

  36. Canalis E, Centerlla M, Burch W, McCarthy TL. Insulin-like growth factor I mediates selective anabolic effects of parathyroid hormone in bone cultures. J Clin Invest 1989;83:60-65.

    Google Scholar 

  37. Canalis E, McCarthy T, Centerlla M. Growth factors and the regulation of bone remodeling. J Clin Invest 1989;81:277-281.

    Google Scholar 

  38. Montesano R, Vassalli JD, Baird A, Guillemin R, Orci L. Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci USA 1986;83:7297-7301.

    Google Scholar 

  39. Mayahara H, Ito T, Nagai H, Miyajima H, Tsukuda R, Taketomi S, Mizoguchi J, Koichi K. In vivo stimulation of endosteal bone formation by basic fibroblast growth factor in rats. Growth Factors 1993;9:73-80.

    Google Scholar 

  40. Nakamura T, Hanada K, Tamura M, Shibanushi T, Nigi H, Tagawa M, Fukumoto S, Matsumoto T. Stimulation of endosteal bone formation by systemic injections of recombinant basic fibroblast growth factor in rats. Endocrinology 1995;136:1276-1284.

    Google Scholar 

  41. Cohn MJ, Izpisua-Belmonte JC, Abud H, Heath JK, Tickle C. Fibroblast growth factors induce additional limb development from the flank of chick embryos. Cell 1995;80:739-746.

    Google Scholar 

  42. Mahmood R, Bresnick J, Hornbruch A, Mahony C, Morton N, Colquhoun K, Martin P, Lumsden A, Dickson C, Mason I. A role for FGF-8 in the initiation and maintenance of vertebrate limb bud outgrowth. Curr Biol 1995;5:797-806.

    Google Scholar 

  43. Rousseau F, Bonaventure J, Legeal-Mallet L, Pelet A, Rozet JM, Maroteaux P, Le Merrer M, Munnich A. Mutations in the gene encoding fibroblast growth factor receptor 3 in achondroplasia. Nature 1994;371:252-254.

    Google Scholar 

  44. Shiang R, Thomspon LM, Zhu Y-Z, Church DM, Fielder TJ, Bocian M, Winokur ST, Wasmuth JJ. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 1994;78:335-342.

    Google Scholar 

  45. Bellus GA, McIntosh I, Smith EA, Aylsworth AS, Kaitila I, Horton WA, Greenhaw GA, Hecht JT, Francomano CA. A recurrent mutation in the tyrosine kinase domain of fibroblast growth factor receptor 3 causes hypochondroplasia. Nature Gene 1995;10:357-359.

    Google Scholar 

  46. Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 1996;84:911-921.

    Google Scholar 

  47. Reardon W, Winter RM, Rutland P, Pulleyn LJ, Jones BM, Malcolm S. Mutations in the fibroblast growth factor receptor 2 gene cause Crouzon syndrome. Nature Gene 1994;8:98-103.

    Google Scholar 

  48. Jabs EW, Li X, Scott AF, Meyers G, Chen W, Eccles M, Mao JI, Charnas LR, Jackson CE, Jaye M. Jackson-Weiss and Crouzon syndromes are allelic with mutations in fibroblast growth factor receptor 2. Nature Genetics 1994;8:275-279.

    Google Scholar 

  49. Muenke M, Schell U, Hehr A, Robin NH, Losken HW, Schinzel A, Pulleyn LJ, Rutland P, Reardon W, Malcolm S. A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nature Gene 1994;8:269-274.

    Google Scholar 

  50. Burgess WH, Shaheen AM, Ravera M, Jaye M, Donohue PJ, Winkles JA. Possible dissociation of the heparin-binding and mitogenic activities of heparin-binding (acidic fibroblast) growth factor-1 from its receptor-binding activities by site-directed mutagenesis of a single lysine residue. J Cell Biol 1990;111:2129-2138.

    Google Scholar 

  51. Burgess WH, Shaheen AM, Hampton B, Donohue PJ, Winkles JA. Structure-function studies of heparin-binding (acidic fibroblast) growth factor-I using site-directed mutagenesis. J Cell Biochem 1991;45:131-138.

    Google Scholar 

  52. Burgess WH, Friesel R, Winkles JA. Structure-function studies of FGF-1: Dissociation and partial reconstitution of certain of its biological activities. Mol Reprod Dev 1994;39:56-60.

    Google Scholar 

  53. Conca W, Auron PE, Aoun-Wathne M, Bennett N, Seckinger P, Welgus HG, Goldring SR, Eisenberg SP, Dayer JM, Krane SM. An interleukin-1β point mutant demonstrates that jun/fos expression is not sufficient for fibroblast metalloproteinase expression. J Biol Chem 1991;266:16265-16268.

    Google Scholar 

  54. Gehrke L, Jobling SA, Paik LS, McDonald B, Rosenwasser LJ, Auron PE. A point mutation uncouples human interleukin-1β biological activity and receptor binding. J Biol Chem 1990;265:5922-5925.

    Google Scholar 

  55. Urist MR. Bone: Formation by autoinduction. Science 1965;150:893-899.

    Google Scholar 

  56. Harris SE, Harris MA, Feng JQ, Sabatini M, Wozney J, Rosen V, Moutastsos I, Bonewald L, Mundy GR. Expression of bone morphogenetic proteins (BMPs) during differentiation of fetal rat calvarial osteoblasts in vitro. J Bone Miner Res 1992;7:S120 (Abstract).

    Google Scholar 

  57. Cunningham NS, Paralkar V, Reddi AH. Osteogenin and recombinant bone morphogenetic protein 2B are chemotactic for human monocytes and stimulate transforming growth factor β1 messenger RNA expression. Proc Natl Acad Sci USA 1992; 89:11740-11744.

    Google Scholar 

  58. Wozney JM, Rosen V. Bone morphogenetic proteins. In: Physiology and Pharmacology of Bone. New York, 1993;725-748.

  59. Wozney JM. The bone morphogenetic protein family: multi-functional cellular regulators in the embryo and adult. Eur J Oral Sci 1998;106:160-166.

    Google Scholar 

  60. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA. Novel regulators of bone formation: molecular clones and activities. Science 1988;242:1528-1534.

    Google Scholar 

  61. Wozney JM. Bone morphogenetic proteins. Growth Factors Res 1989;1:267-280.

    Google Scholar 

  62. Wang EA, Rosen V, D'Alessandro JS, Bauduy M, Cordes P, Harada T, Israel DI, Hewick RM, Kerns KM, LaPan P. Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci USA 1990;87:2220-2224.

    Google Scholar 

  63. Israel DI, Nove J, Kerns KM, Kaufman RJ, Rosen V, Cox KA, Wozney JM. Heterodimeric bone morphogenetic proteins show enhanced activity in vitro and in vivo. Growth Factors 1996;13:291-300.

    Google Scholar 

  64. Rosen V, Cox K, Hattersley G. Bone morphogenetic proteins. Principles of Bone Biology. New York: Academic Press, 1996;661.

    Google Scholar 

  65. van der Meulen MCH, Bailon-Plaza A, Hunter WLM, Long bone fracture healing in bone morphogenetic protein-5-deficient mice. Bone Miner Res 1998;13:S352 (Abstract).

    Google Scholar 

  66. Brunet LJ, McMahon JA, McMahon AP, Harland RM. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 1998;280:1455-1457.

    Google Scholar 

  67. Israel DI, Nove J, Kerns KM, Moutsatsos IK, Kaufman RJ. Expression and characterization of bone morphogenetic protein-2 in Chinese hamster ovarian cells. Growth Factors 1992;7:139-150.

    Google Scholar 

  68. Zhao M, Wang HX, Zhou TC. Expression of recombinant mature peptide of human bone morphogenetic protein-2 in Escharichia coli and its activity of bone formation in vitro and in vivo. Chinese Biochemical J 1994;10:319-324.

    Google Scholar 

  69. Fujimura K, Bessho K, Kusumoto K, Ogawa Y, Iizuka T. Experimental studies on bone inducing activity of composites of atelopeptide type I collagen as a carrier for ectopic osteoinduction by rhBMP-2. Biochem Biophys Res Commun 1995;208:316-322.

    Google Scholar 

  70. Muschler GF, Hyodo A, Manning T, Kambic H, Easley K. Evaluation of human bone morphogenetic protein 2 in a canine spinal fusion model. Clin Orthop 1994;308:229-240.

    Google Scholar 

  71. Alpaslan C, Irie K, Takahashi K, Ohashi N, Sakai H, Nakajima T, Ozawa H. Long-term evaluation of recombinant human bone morphogenetic protein-2 induced bone formation with a biologic and synthetic delivery system. Br J Oral Maxillofax Surg 1996;34:414-418.

    Google Scholar 

  72. Nevins M, Kirker-Head C, Nevins M, Wozney JA, Palmer R, Graham D. Bone formation in the goat maxillary sinus induced by absorbable collagen sponge implants impregnated with recombinant human bone morphogenetic protein-2. Int Perio Res Dent 1996;16:8-19.

    Google Scholar 

  73. Viggeswarapu M, Liu Y, Racine M, Titus L, Hair GA, Boden SD. Adenovirus-mediated gene transfer of a novel osteoinductive LMP-1 cDNA induces nodule formation in vitro and bone formation in vivo. J Bone Miner Res 1998;13:S243 (Abstract).

    Google Scholar 

  74. Wright NM, Cheng SL, Riew KD, Avioli LV, Lou J. In vitro and in vivo induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene. J Bone Miner Res 1998;13:S243 (Abstract).

    Google Scholar 

  75. Massague J. TGFβ signaling: Receptors, transducers and MAD proteins. Cell 1996;85:947-950.

    Google Scholar 

  76. Hoodless PA, Haerry T, Abdollah S, Stapleton M, O'Connor MB, Attisano L, Wrana JL. MADR1, a MAD-related protein that functions in BMP-2 signaling pathways. Cell 1996;85:489-500.

    Google Scholar 

  77. Nishimura R, Kato Y, Chen D, Harris SE, Mundy GR, Yoneda T. Smad5 and DPC4 are key molecules in mediating BMP-2-induced osteoblastic differentiation of the pluripotent mesenchymal precursor cell line C2C12. J Biol Chem 1998;273:1872-1879.

    Google Scholar 

  78. Chen Y, Bhushan A, Vale W. Smad8 mediates the signaling of the receptor serine kinase. Proc Natl Acad Sci USA 1997;94:12938-12943.

    Google Scholar 

  79. Zou H, Wieser R, Massague J, Niswander L. Distinct roles of type I bone morphogenetic protein receptors in the formation and differentiation of cartilage. Gene Dev 1997;11:2191-2203.

    Google Scholar 

  80. Kawakami Y, Ishikawa T, Shimabara M, Tanda N, Enomoto-Iwamoto M, Iwamoto M, Kuwana T, Ueki A, Noji S, Nohno T. BMP signaling during bone pattern determination in the developing limb. Development 1996;122:3557-3566.

    Google Scholar 

  81. Chen D, Ji X, Harris MA, Feng JQ, Karsenty G, Celeste AJ, Rosen V, Mundy GR, Harris SE. Differentiation roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. J Cell Biol 1998;142:295-305.

    Google Scholar 

  82. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 1997;89:755-764.

    Google Scholar 

  83. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell 1997;89:747-754.

    Google Scholar 

  84. Xu C, Ji X, Harris MA, Mundy GR, Harris SE. Transcriptional regulation of the BMP-2 gene in murine chondroblasts. J Bone Miner Res 1997;12:S293 (Abstract).

    Google Scholar 

  85. Xu C, Harris MA, Brown D, Olson E, Mundy GR, Harris SE. The transcription factor scleraxis stimulates differentiation of chondroblasts and blocks transition to osteoblast-like phenotype. J Bone Miner Res 1998;13:S183 (Abstract).

    Google Scholar 

  86. Xu C, Harris MA, Rubenstein J, Mundy GR, Harris SE. Homeobox gene Dlx-2 acts as a mediator of BMP-2 action on chondroblast differentiation. J Bone Miner Res 1998;13:S173 (Abstract).

    Google Scholar 

  87. Canalis E. Platelet derived growth factor stimulates DNA and protein synthesis in cultured fetal rat calvaria. Metabolism 1980;30:970-975.

    Google Scholar 

  88. Canalis E. Effect of insulin-like growth factor I on DNA and protein synthesis in cultured rat calvaria. J Clin Invest 1980;66:709-719.

    Google Scholar 

  89. Spencer EM, Liu CC, Si EC, Howard GA. In vivo actions of insulin-like growth factor-I (IGF-I) on bone formation and resorption in rats. Bone 1991;12:21-26.

    Google Scholar 

  90. Mohan S, Jennings JC, Linkhart TA, Wergedal JE, Baylink DJ. Primary structure of human skeletal growth factor (SGF): Homology with IGF-II. J Bone Miner Res 1988;3:S218 (Abstract).

    Google Scholar 

  91. DeChiara TM, Efstratiadis A, Robertson EJ. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 1990;345:78-80.

    Google Scholar 

  92. Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type I IGF receptor (Igflr). Cell 1993;75:59-72.

    Google Scholar 

  93. Baker J, Liu JP, Robertson EJ, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 1993;75:73-82.

    Google Scholar 

  94. Karaplis AC, Luz A, Glowacki J, Bronson RT, Tybulewicz VL, Kronenberg HM, Mulligan RC. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev 1994;8:277-289.

    Google Scholar 

  95. Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 1995;16:3-34.

    Google Scholar 

  96. Graves DT, Owen AJ, Antoniades HN. Evidence that a human osteosarcoma cell line which secretes a mitogen similar to platelet-derived growth factor requires growth factors present in platelet-poor plasma. Cancer Res 1983;43:83-87.

    Google Scholar 

  97. Graves DT, Owen AJ, Barth RK, Tempst P, Winoto A, Fors L, Hood LE, Antoniades HN. Detection of c-sis transcripts and synthesis of PDGF-like proteins by human osteosarcoma cells. Science 1984;226:972-974.

    Google Scholar 

  98. Lynch SE, Williams RC, Polson AM, Howell TH, Reddy MS, Zappo VE, Antoniades HN. A combination of platelet-derived and insulin-like growth factors enhances periodontal regeneration. J Clin Periodontol 1989;16:545-548.

    Google Scholar 

  99. Tashjian AH, Hohmann EL, Antoniades HN, Levine L. Platelet-derived growth factor stimulates bone resorption via a prostaglandin mediated mechanism. Endocrinology 1982;111:118-124.

    Google Scholar 

  100. Niewolna M, Yoneda T, Izbicka E, Zilberstein A, Mundy GR. Direct regulation of src tyrosine kinase activity and bone resorption in mature osteoclasts by a soluble mediator, platelet-derived growth factor (PDGF). J Bone Miner Res 1993;8:S188 (Abstract).

    Google Scholar 

  101. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GWH, Beddington RSP, Mundlos S, Olsen BR, Selby PB, Owen MJ. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 1997;89:765-771.

    Google Scholar 

  102. Mundlos S. Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, Lindhout D, Cole WG, Henn W, Knoll JHM, Owen MJ. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 1997;89:773-779.

    Google Scholar 

  103. Lau KH, Farley JR, Freeman TK, Baylink DJ. A proposed mechanism of the mitogenic action of fluoride on bone cells: inhibition of the activity of an osteoblastic acid phosphatase. Metabolism 1989;38:858-868.

    Google Scholar 

  104. Farley JR, Wergedal JE, Baylink DJ. Fluoride directly stimulates proliferation and alkaline phosphatase activity of bone-forming cells. Science 1983;222:330-332.

    Google Scholar 

  105. Burgener D, Bonjour JP, Caverzasio J. Increased tyrosine kinase activity in osteoblast-like cells by fluoride. Regulatory role for the stimulation of cell proliferation and Pi transport across the plasma membrane. J Bone Miner Res 1995;10:164-171.

    Google Scholar 

  106. Caverzasio J, Palmer G, Bonjour JP. Fluoride: Mode of action. Bone 1998;22:585-589.

    Google Scholar 

  107. Kopp JB, Robey PG. Sodium fluoride does not increase human bone cell proliferation or protein synthesis in vitro. Calcif Tissue Int 1992;5:96-97.

    Google Scholar 

  108. Chavassieux P, Chenu C, Valentin-Opran A, Delmas PD, Boivin G, Chapuis MC, Meunier P. In vitro exposure to sodium fluoride does not modify activity or proliferation of human osteoblastic cells in primary cultures. J Bone Miner Res 1993;8:37-44.

    Google Scholar 

  109. Parsons JA, Potts JT. Physiology and chemistry of parathyroid hormone. Clin Endo Metab 1972;1:33-78.

    Google Scholar 

  110. Cosman F, Lindsay R. Is parathyroid hormone a therapeutic option for osteoporosis? A review of the clinical evidence. Calc Tissue Int 1998;62:475-480.

    Google Scholar 

  111. Onishi T, Zhang W, Cao X, Hruska K. The mitogenic effect of parathyroid hormone is associated with E2F-dependent activation of cyclin-dependent kinase 1 (cdc2) in osteoblast precursors. J Bone Miner Res 1997;12:1596-1605.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mundy, G.R., Chen, D., Zhao, M. et al. Growth Regulatory Factors and Bone. Rev Endocr Metab Disord 2, 105–115 (2001). https://doi.org/10.1023/A:1010015309973

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010015309973

Navigation