Skip to main content
Log in

Induction of a Peroxisomal Malate Dehydrogenase Isoform in Liver of Starved Rats

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The influence of starvation on malate dehydrogenase (MDH) in rat liver was investigated. Native electrophoresis revealed two MDH isoforms in non-starved rats and three isoenzymes in starved rats. After sucrose density gradient centrifugation of cell organelles from liver, MDH activity was detected in the mitochondrial and cytosolic fractions from non-starved rats. However, additional activity was found in the peroxisomal fraction from starved rats. The latter was identified as the electrophoretically new isoform in starved animals. The three isoforms of malate dehydrogenase from hepatocytes were separated and partially purified by chromatography on DEAE-Toyopearl. Several kinetic and regulatory properties of the three isoforms were rather similar. It is suggested that the newly expressed isoform of MDH operates in the glyoxylate cycle of liver peroxisomes of food-starved animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Lance, C., and Rustin, P. (1984) Physiol. Veg., 22, 625–641.

    Google Scholar 

  2. Backman, L., and Johansson, G. (1976) FEBS Lett., 65, 39–43.

    Google Scholar 

  3. Cooper, T. G., and Beevers, H. (1969) J. Biol. Chem., 244,3507–3513.

    Google Scholar 

  4. Kornberg, H. L., and Krebs, H. A. (1957) Nature, 157, 988–991.

    Google Scholar 

  5. Krahling, J. B., Gee, R., Murphy, P. A., Kirk, J. R., and Tolbert, N. E. (1978) Biochem. Biophys. Res. Commun., 82, 136–141.

    Google Scholar 

  6. Cioni, M., Pinzauti, G., and Vanni, P. (1981) Comp. Biochem. Physiol., 70, 1–26.

    Google Scholar 

  7. Barrett, J., Ward, C. W., and Fairbairn, D. (1970) Comp. Biochem. Physiol., 35, 577–585.

    Google Scholar 

  8. Liu, F., Thatcher, J. D., Barral, J. M., and Epstein, H. F. (1995) Dev. Biol., 169, 399–414.

    Google Scholar 

  9. Rubin, H., and Trelease, R. N. (1976) J. Cell Biol., 70, 374–383.

    Google Scholar 

  10. Davis, W. L., Jones, R. G., Farmer, G. R., Dickerson, T., Cortinas, E., Cooper, O. J., Crawford, L., and Goodman, D. B. P. (1990) Anat. Record, 227, 271–284.

    Google Scholar 

  11. Goodman, D. B. P., Davis, W. L., and Jones, R. G. (1980) Proc. Natl. Acad. Sci. USA, 77, 1521–1525.

    Google Scholar 

  12. Jones, C. T. (1980) Biochem. Biophys. Res. Commun., 95, 849–856.

    Google Scholar 

  13. Holmes, R. P. (1993) Biochim. Biophys. Acta, 1158, 47–51.

    Google Scholar 

  14. Jones, J. D., Burnett, P., and Zollman, P. (1999) Comp. Biochem. Physiol. (Pt. B. Biochem. Mol. Biol.), 124, 177–179.

    Google Scholar 

  15. Davis, W. L., Goodman, D. B., Crewford, L. A., Cooper, O. J., and Matthews, J. L. (1990) Biochim. Biophys. Acta, 1051, 276–278.

    Google Scholar 

  16. Davis, W. L., and Goodman, D. B. (1992) Anat. Record, 234, 461–468.

    Google Scholar 

  17. Lebkova, N. P. (1984) Byull. Eksp. Biol. Med., 12, 73–76.

    Google Scholar 

  18. Popov, V. N., Volvenkin, S. V., Eprintcev, A. T., and Igamberdiev, A. U. (2000) Izvestiya RAN, Ser. Biol., 6, 663–667.

    Google Scholar 

  19. Popov, V. N., Igamberdiev, A. U., Schnarrenberger, C., and Volvenkin, S. V. (1996) FEBS Lett., 390, 258–260.

    Google Scholar 

  20. Popov, V. N., Volvenkin, S. V., Eprintcev, A. T., and Igamberdiev, A. U. (1998) FEBS Lett., 440, 55–58.

    Google Scholar 

  21. Tanaka, T., Inazawa, J., and Nakamura, Y. (1996) Genomics, 32, 128–130.

    Google Scholar 

  22. Adams, M. D., Soares, M. B., Kerlavage, A. R., Fields, C., and Venter, J. C. (1993) Nat. Genet., 4, 373–380.

    Google Scholar 

  23. Breidenbach, R. W., Kahn, A., and Beevers, H. (1968) Plant Physiol., 43, 703–713.

    Google Scholar 

  24. Davis, B. J., and Ornstein, L. (1959) A New High Resolution Electrophoresis Method, Society for Study at the New York Academy of Medicine, pp. 112–118.

  25. Vasil'eva, E. D. (1977) Uspekhi Fiziol. Nauk, 8, 97–127.

    Google Scholar 

  26. Yamazaki, R. K., and Tolbert, N. E. (1969) Biochim. Biophys. Acta, 178, 11–20.

    Google Scholar 

  27. Schnarrenberger, C., Fitting, K.-H., Tetour, M., and Zehler, H. (1980) Protoplasma, 103, 299–307.

    Google Scholar 

  28. Hayashi, M., De Bellis, L., Alpi, A., and Nishimura, M. (1995) Plant Cell Physiol., 36, 669–680.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, V.N., Volvenkin, S.V., Kosmatykh, T.A. et al. Induction of a Peroxisomal Malate Dehydrogenase Isoform in Liver of Starved Rats. Biochemistry (Moscow) 66, 496–501 (2001). https://doi.org/10.1023/A:1010298516534

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010298516534

Navigation