Skip to main content
Log in

Vertebrate tropomyosin: distribution, properties and function

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

Tropomyosin (TM) is widely distributed in all cell types associated with actin as a fibrous molecule composed of two α-helical chains arranged as a coiled-coil. It is localised, polymerised end to end, along each of the two grooves of the F-actin filament providing structural stability and modulating the filament function. To accommodate the wide range of functions associated with actin filaments that occur in eucaryote cells TM exists in a large number isoforms, over 20 of which have been identified. These isoforms which are expressed by alternative promoters and alternative RNA processing of four genes, TPM1, 2, 3 and 4, all conform to a general pattern of structure. Their amino acid sequences consist of an integral number, six or seven in vertebrates, of quasiequivalent regions of about 40 residues that are considered to represent the actin-binding regions of the molecule. In addition to the variable regions a large part of the polypeptide chains of the TM isoforms, mainly centrally located and expressed by five exons, is invariant. Many of the isoforms are tissue and filament specific in their distribution implying that the exons expressed in them and the regions of the molecule they represent are of significance for the function of the filament system with which they are associated. In the case of muscle there is clear evidence that the TM moves its position on the F-actin filament during contraction and it is therefore considered to play an important part in the regulation of the process. It is uncertain how the role of TM in muscle compares to that in non-muscle systems and if its function in the former tissue is unique to muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aki T, Kodama T, Fugikawa A, Muira K, Shigeta S, Wada T, Jyo T, Murooka Y, Oka S and Ono K (1995) Immunochemical characterisation of recombinant and native tropomyosin as a new allergen from house dust mite, Dermatophagiodes farinae. J Allergy Clin Immunol 96: 74-83.

    Google Scholar 

  • Akutsu S, Tobita-Teromoto T, Xie L, Hirabayashi T and Miyazaki JI (2000) Interaction of chicken liver tropomyosin with glutamate dehydrogenase. Zool Sc 17: 871-879.

    Google Scholar 

  • Almenar-Queralt A, Lee A, Conley, CA, Ribas de Pouplana L and Fowler VM (1999) Identification of a novel tropomodulin isoform, skeletal tropomodulin, that caps actin filament pointed ends in fast skeletal muscle. J Biol Chem 274: 28466-28475.

    Google Scholar 

  • Amphlett GM, Syska H and Perry SV (1976) The polymorphic forms of tropomyosin and troponin I in developing rabbit skeletal muscle. FEBS Letts 63: 22-26.

    Google Scholar 

  • Astbury WT, Reed R and Spark LC (1948) An X-ray and electron microscope study of tropomyosin. Biochem J 43: 282-287.

    Google Scholar 

  • Asturias JA, Gomez-Bayon N, Arilla MC, Martinez A, Palacios R, Sanchez-Gascon F and Martinez J (1999) Molecular characterisation of American cockroach tropomyosin (Periplaneta americana allergen 7), a cross-reactive allergen. J Immunol 162: 4342-4348.

    Google Scholar 

  • Ayuso A, Lehrer SB, Tanaka L, Ibanez MD, Pascual C, Burks AW, Sussman GL, Goldberg B, Lopez M and Reese G (1999) IgE antibody response to vertebrate meat proteins including tropomyosin. Ann Allerg Asthma Imm 83: 399-405.

    Google Scholar 

  • Babcock GG and Fowler VM (1994) Isoform-specific interaction of tropomodulin with skeletal muscle and crythrocyte tropomyosins. J Biol Chem 269: 27510-27518.

    Google Scholar 

  • Bacchiocchi C and Lehrer SS (1999) Fluorescent energy transfer studies of the tropomyosin movement in reconstituted skeletal muscle thin filaments. Biophys J 76: A154.

    Google Scholar 

  • Bacchiocchi C and Lehrer SS (2000) Multisite fluorescent energy transfer shows calcium induced movement in reconstituted skeletal muscle thin filaments. Biophys J 78: 364A.

    Google Scholar 

  • Bailey K (1946) Tropomyosin: a new asymmetric protein component of muscle. Nature 157: 368.

    Google Scholar 

  • Bailey K (1948) Tropomyosin: a new asymmetric protein component of muscle. Biochem J 43: 271-275.

    Google Scholar 

  • Bailey K (1951) End group assay in some proteins of the keratin-myosin group. Biochem J 49: 23-27.

    Google Scholar 

  • Bailey K (1956) The proteins of adductor muscles. Pubbl Staz Zool Napoli 29: 96-106.

    Google Scholar 

  • Bailey K (1957) Invertebrate tropomyosin. Biochim Biophys Acta 24: 612-619.

    Google Scholar 

  • Bailey K, Gutfreund H and Ogston AG (1948) Molecular weight of tropomyosin from rabbit muscle. Biochem J 43: 279-281.

    Google Scholar 

  • Balasubramanian MK, Helfman DK and Hemmingsen SM (1992) A new tropomyosin essential for cytokinesis in the fission of yeast S pombe. Nature 360: 84-87.

    Google Scholar 

  • Barany M and Barany K (1980) Phosphorylation of the myofibrillar proteins. Ann Rev Physiol 42: 275-92.

    Google Scholar 

  • Basi GS and Storti RV (1986) Structure and DNA sequence of the tropomyosin I gene from Drosophila melanogaster. J Biol Chem 261: 817-827.

    Google Scholar 

  • Bear RS (1944) X-ray diffraction studies on protein fibers. II Feather rachis, porcupine quill and clam muscle. J Amer Chem Soc 66: 1297-1305.

    Google Scholar 

  • Biancone L, Mandal A, Yang H and Pallone F (1995) Production of immunoglobin G and GI antibodies to cytoskeletal protein by lamina propria cells in ulcerative colitis. Gastroenterology 109: 3-12.

    Google Scholar 

  • Biancone L, Monteleone G, Marasco R, Dasgupta T, Paoluzi AO, Marcheggiano A, Paoluzi P, Pallone F and Das KM (1998) Autoimmunity to tropomyosin isoforms in ulcerative colitis (UC) patients and unaffected relatives. Clin Exp Immunol 113: 198-205.

    Google Scholar 

  • Billeter R, Heizmann CW, Howald H and Jenny E (1982) α-and β-tropomyosin in typed single fibres of human skeletal muscle. FEBS Letts 132: 133-136.

    Google Scholar 

  • Bing W and Marston S (1999) Measurement of relative force in the in vitro motility assay using α-actinin to retard actin filament movement. Tropomyosin and troponin increase relative force. Biophys J 76: A36.

    Google Scholar 

  • Bing W, Knott A and Marston SB (2000a) A simple method for measuring the relative force exerted by myosin on actin filaments in the in vitro motility assay: evidence that tropomyosin and troponin increase force in single filaments. Biochem J 350: 693-699.

    Google Scholar 

  • Bing W, Razzaq A, Sparrow J and Marston S (1998) Tropomyosin and troponin regulation of wild type and E93K mutant actin filaments from Drosophila flight muscle. J Biol Chem 273: 15016-15021.

    Google Scholar 

  • Bing W, Redwood CS, Purcell IF, Esposito G, Watkins H and Marston S (1997) Effects of two hypertrophic cardiomyopathy mutations in α-tropomyosin, Asp175Asn and Glu180Gly, on Ca2+ regulation of thin filament motility. Biochem Biophys Res Commun 236: 769-764.

    Google Scholar 

  • Bing W, Knott A, Redwood CS, Esposito G, Purcell IF, Watkins H and Marston S (2000b) Effect of hypertrophic cardiomyopathy mutations in human cardiac muscle α-tropomyosin (Asp175Asn and Glu180Gly) on the regulatory properties of human cardiac troponin determined by in vitro motility assay. J Mol Cell Cardiol 32: 1489-1498.

    Google Scholar 

  • Bivin DB, Stone DB, Schneider DK and Mendelson RA (1991) Cross-helix separation of tropomyosin molecules in acto-tropomyosin as determined by neutron scattering. Biophys J 59: 880-888.

    Google Scholar 

  • Bodwell CE (1967) Two subunits of tropomyosin B. Arch Biochem Biophys 122: 246-248.

    Google Scholar 

  • Borovikov YS, Nowak E, Khoroshev MI and Dabrowska R (1993) The effect of Ca2+ on the conformation of tropomyosin and actin in regulated actin filaments with or without subfragment 1. Biochem Biophys Acta 1163: 280-286.

    Google Scholar 

  • Bottellini R, Coviello DA, Redwood CS, Pellegrino MA, Maron BJ, Spirito P, Watkins H and Reggiani C (1998) A mutant tropomyosin that causes hypertrophic myopathy is expressed in vivo and associated with an increased calcium sensitivity. Circ Res 82: 106-115.

    Google Scholar 

  • Brandt PW, Diamond MS, Rutchick JC and Schachat FM (1987) Cooperative interactions between troponin-tropomyosin units extend the length of the thin filament in skeletal muscle. J Mol Biol 195: 885-896.

    Google Scholar 

  • Bremel RD, Murray JM and Weber A (1972) Manifestations of cooperative behaviour in the regulated actin filament during actin-activated ATP hydrolysis in the presence of calcium. Cold Spring Harbor Symp Quant Biol 37: 267-265.

    Google Scholar 

  • Bretscher A (1986) Thin filament regulatory proteins of smooth and non-muscle cells. Nature 321: 726-727.

    Google Scholar 

  • Bretscher A and Lynch W (1985) Identification and localisation of immunoreactive forms of caldesmon in smooth and non-muscle cells: a comparison with the distribution of tropomyosin and alpha-actinin. J Cell Biol 100: 1656-1663.

    Google Scholar 

  • Brisson JR, Golosinska K, Smillie LB and Sykes BD (1986) Interaction of tropomyosin and troponin T: a proton nuclear magnetic resonance study. Biochemistry 25: 4548-4555.

    Google Scholar 

  • Bronson DD and Schachat FH (1982) Heterogeneity of contractile proteins. J Biol Chem 257: 3937-3944.

    Google Scholar 

  • Broschat KO (1990) Tropomyosin prevents depolymerisation of actin filaments from the pointed end. J Biol Chem 265: 21323-21329.

    Google Scholar 

  • Broschat KO, Burgess DR and Low (1986) Tropomyosin isoforms from chicken brain and intestinal epithelium have distinct actin-binding powers. J Biol Chem 261: 13350-13359.

    Google Scholar 

  • Broschat KO, Weber A and Burgess DR (1989) Tropomyosin stabilises the pointed end of actin by slowing depolymerisation. Biochemistry 28: 8501-8506.

    Google Scholar 

  • Buck SH, Patel JR, Muthuchamy M, Wieczorek DF and Moss RL (1999) Transgenic expression of β-tropomyosin in murine heart increases calcium sensitivity of isometric tension and slows cross bridge kinetics. Biophys J 76: A28.

    Google Scholar 

  • Burton DJ and Marston SB (1998) Regulation of smooth muscle contraction by a C-terminal fragment of caldesmon. J Mol Cell Cardiol 30: A38.

    Google Scholar 

  • Butters CA, Willasden KA and Tobacman LS (1993) Cooperative interactions between adjacent troponin-tropomyosin complexes may be transmitted through the actin filament. J Biol Chem 268: 15565-15572.

    Google Scholar 

  • Cabral-Lilly D, Tobacman LS, Mehegan JP and Cohen C (1997) Molecular polarity in tropomyosin troponin T co-crystals. Biophys J 73: 1763-1770.

    Google Scholar 

  • Carsten ML (1968) Tropomyosin from smooth muscle of the uterus. Biochemistry 7: 960-967.

    Google Scholar 

  • Censullo R and Cheung HC (1994) Tropomyosin length and two-stranded F-actin flexibility in the thin filament. J Mol Biol 243: 520-529.

    Google Scholar 

  • Chacko S and Eisenberg E (1990) cooperativity of actin activated ATPase of gizzard heavy meromyosin in the presence of gizzard tropomyosin. J Biol Chem 265: 2105-2110.

    Google Scholar 

  • Chacko S, Conti MA and Adelstein RS (1977) Effect of phosphorylation of smooth muscle myosin on actin activation and Ca2+ regulation. Proc Natl Acad Sc USA 74: 129-133.

    Google Scholar 

  • Chandy IK, Lo J and Ludescher RD (1999) Differential mobility of skeletal and cardiac tropomyosin on the surface of F-actin. Biochemistry 38: 9286-9294.

    Google Scholar 

  • Cho Y-J (2000) The carboxyl terminal amino acid residues glutamine 276-threonine 277 are important for actin affinity of unacetylated smooth alpha tropomyosin. J Biochem Mol Biol 33: 531-536.

    Google Scholar 

  • Cho Y-J, Liu J and Hitchcock-Degregori SE (1990) The amino terminus of muscle tropomyosin is a major determinant for function. J Biol Chem 265: 538-545.

    Google Scholar 

  • Cho Y-J and Hitchcock-Degregori SE (1991) Relationship between alternatively spliced exons and functional domains in tropomyosin. Proc Natl Acad Sc USA 88: 10153-10157.

    Google Scholar 

  • Chong PCS and Hodges RS (1982) Photochemical cross-linking between rabbit skeletal troponin and α-tropomyosin. J Biol Chem 257: 9152-60.

    Google Scholar 

  • Chu KH, Wong SH and Leung PSC (2000) Tropomyosin is the major mollusk allergen; reverse transcriptase polymerase chain reaction, expression and IgE reactivity. Mar Biotechnol 2: 499-509.

    Google Scholar 

  • Clayton L, Reinach LC, Chumbley GM and MacLeod AR (1988) Organisation of the of the hTMnm gene: implications for the evolution of muscle and non-muscle tropomyosins. J Mol Biol 201: 507-515.

    Google Scholar 

  • Cohen C and Longley W (1966) Tropomyosin paracrystals formed by divalent cations. Science 152: 794-796.

    Google Scholar 

  • Cohen I and Cohen C (1972) A tropomyosin-like protein from human platelets. J Mol Biol 68: 383-387.

    Google Scholar 

  • Coluccio LM (1994) An end in sight: Tropomodulin. J Cell Biol 127: 1497-1499.

    Google Scholar 

  • Corsi A and Perry SV (1958) Some observations on the localisation of myosin, actin and tropomyosin in the rabbit myofibril. Biochem J 68: 12-17.

    Google Scholar 

  • Cote GP (1981) Structural and functional properties of the non-muscle tropomyosins. Mol Cell Biochem 57: 127-146.

    Google Scholar 

  • Cote GP and Smillie LB (1981a) The effects of platelet tropomyosinon the ATPase activities of muscle actomyosin subfragment 1 in the absence and the presence of troponin, its components and calmodulin. J Biol Chem 256: 11999-12004.

    Google Scholar 

  • Cote GP and Smillie LB (1981b) The interaction of equine platelet tropomyosin with skeletal muscle actin. J Biol Chem 256: 7257-7261.

    Google Scholar 

  • Cote GP, Lewis WG, Pato MD and Smillie LB (1978a) Platelet tropomyosin: lack of binding to skeletal muscle troponin and correlation with sequence. FEBS Letts 94: 131-135.

    Google Scholar 

  • Cote GP, Lewis WG and Smillie LB (1978b) Non-polymerisability of platelet tropomyosin and its NH2 and COOH-terminal sequences. FEBS Letts 91: 237-241.

    Google Scholar 

  • Crick FHC (1953) The packing of alpha helices; simple coiled coils. Acta Crystallogr 6: 689-697.

    Google Scholar 

  • Cuticchia AJ and Pearson PL (1993) Human Gene Mapping: a Compendium. Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Cummins P and Perry SV (1973) The subunits and biological activity of polymorphic forms of tropomyosin. Biochem J 133: 765-777.

    Google Scholar 

  • Cummins P and Perry SV (1974) Chemical and immunochemical characteristics of tropomyosins from striated and smooth muscles. Biochem J 141: 43-49.

    Google Scholar 

  • Dabrowska R, Nowak E and Drabikowski W (1983) Some functional properties of non-polymerisable and polymerisable tropomyosin. J Muscle Res Cell Motil 4: 143-161.

    Google Scholar 

  • Das KM, Dasgupta A, Mandal A and Gengn X (1993) Autoimmunity to cytoskeletal protein tropomyosin. J Immunol 150: 2487-2493.

    Google Scholar 

  • Daul CB, Slattery M, Reese G and Lehrer SB (1994) Identification of the major brown shrimp (Penaeus aztecus) allergen as the muscle protein tropomyosin. Int Arch Allergy Immunol 105: 45-55.

    Google Scholar 

  • deBelle I and Mak AS (1987) Isolation and characterisation of tropomyosin kinase from chicken embryo. Biochim Biophys Acta 925: 17-26.

    Google Scholar 

  • der Terrossian E, Fuller SD, Stewart M and Weeds AG (1981) Porcine platelet tropomyosin. Purification, characterisation and paracrystal formation. J Mol Biol 153: 147-167.

    Google Scholar 

  • Dohlman JG, Lupas A and Carson M (1993) Long charge-rich alpha-helices in systemic autoantigens. Biochim Biophys Res Com 195: 686-696.

    Google Scholar 

  • Drees B, Brown C, Barrel BG and Bretscher A (1995) Tropomyosin is essential in yeast, yet the TPM1 and TPM2 products perform distinct functions. J Cell Biol 128: 383-392.

    Google Scholar 

  • Eaton BL (1976) Tropomyosin binding to F-actin induced by myosin heads. Science 192: 1337-1339.

    Google Scholar 

  • Eaton BL, Kominz DR and Eisenberg E (1975) correlation between the inhibition of the acto-heavy meromyosin ATPase and the binding of tropomyosin to F-actin: effects of Mg2+, KCl, troponin I and troponin C. Biochemistry 14: 2718-2725.

    Google Scholar 

  • Ebashi S (1963) Third component participating in the superprecipitation of natural acto myosin. Nature 200: 1010.

    Google Scholar 

  • Eisenberg E and Moos C (1970) Actin activation of heavy meromyosin adenosine triphosphatase. J Biol Chem 245: 2451-2456.

    Google Scholar 

  • Eisenberg E and Kielley WW (1974) Troponin tropomyosin complex. Column chromatographic separation and activity of the three active troponin components with and without tropomyosin present. J Biol Chem 249: 4742-4748.

    Google Scholar 

  • El-Mezgucldi M and Marston SB (1996) The effects of smooth muscle calponin on the strong and weak myosin binding sites on actin. J Biol Chem 271: 28161-28167.

    Google Scholar 

  • El-Saleh SC, Thieret R, Johnson P and Potter JD (1984) Modification of Lys-237 on actin by 2,4-pentadione. J Biol Chem 259: 11014-11021.

    Google Scholar 

  • Erdelyi M, Michon AM, Guichet A, Glotzer JB and Ephrussi A (1995) Requirement for Drosophila tropomyosin in oskar mRNA localisation. Nature 377: 524-527.

    Google Scholar 

  • Evans CC, Pena JR, Phillips RM, Muthuchamy M, Wieczorek DF, Solaro RJ and Wolska BW (2000) Altered hemodynamics in transgenic mice harbouring mutant tropomyosin linked to hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 279: H2414-H2423.

    Google Scholar 

  • Fatigati V and Murphy RA (1984) Actin and tropomyosin variants in smooth muscle. Dependence on tissue type. J Biol Chem 259: 14383-14388.

    Google Scholar 

  • Fine RE and Blitz AL (1975) A chemical comparison of tropomyosins from muscle and non-muscle tissues. J Mol Biol 95: 447-454.

    Google Scholar 

  • Fine RE, Blitz AL, Hitchcock SE and Kaminer B (1973) Tropomyosin in brain and growing neurones. Nature New Biol 245: 182-186.

    Google Scholar 

  • Fowler VM (1987) Identification and purification of a novel Mr 43,000 tropomyosin-binding protein from human erythrocyte membranes. J Biol Chem 262: 12792-12800.

    Google Scholar 

  • Fowler VM (1990) Tropomodulin. A cytoskeletal protein that binds to the end of erythrocyte tropomyosin and inhibits tropomyosin binding to actin. J Cell Biol 111: 471-482.

    Google Scholar 

  • Fowler VM (1996) Regulation of actin filament length in erythrocytes and striated muscle. Curr Opin Cell Biol 8: 86-96.

    Google Scholar 

  • Fowler VM, and Bennett V (1984) Erythrocyte membrane tropomyosin. Purification and properties. J Biol Chem 259: 5978-5989.

    Google Scholar 

  • Fowler M, Sussman A, Miller PG, Flucher BA and Daniels MP (1993) Tropomodulin is associated with the free (pointed) ends of thin filaments in rat skeletal muscle. J Cell Biol 120: 411-420.

    Google Scholar 

  • Fujime S and Ishiwata S (1971) Dynamic study of F-actin by quasielectric scattering of laser light. J Mol Biol 62: 251-265.

    Google Scholar 

  • Fujita H and Ishiwata S (1999) Tropomyosin modulates pH dependence of isometric tension. Biophys J 77: 1540-1446.

    Google Scholar 

  • Fujita A, Kuroda S, Tada H, Hidakka Y, Kimura M, Takeoka K, Nagata S, Sato H and Amino N (2000) Enzyme linked immunoabsorbent assay from anti-tropomyosin antibodies and its clinical application to various heart diseases. Clin Chem Acta 299: 179-192.

    Google Scholar 

  • Geeves MA and Lehrer SS (1994) Dynamics of the muscle thin filament regulatory switch-the size of the cooperative unit. Biophys J 67: 273-282.

    Google Scholar 

  • Geeves MA, Chai M and Lehrer SS (2000) Inhibition of actin-myosin ATPase activity by troponin I and IC: relationship to the thin filament states of muscle. Biochemistry 39: 9345-9350.

    Google Scholar 

  • Geng X, Biancone, Dai HH, Lin JJ-C, Yoshizaki N, Dasgupta A, Pallone F and Das M (1998) Tropomyosin isoforms in intestinal mucosa. Production of autoantibodies to tropomyosin isoforms in ulcerative colitis. Gastroenterology 114: 912-922.

    Google Scholar 

  • Geng X, Lin JL-C, Prasad S, Das KM and Lin JJ-C (2000) Isolation of a novel tropomyosin isoform from a human colon cancer cell line T-84 and its expression in primary colon cancer and in ulcerative colitis (UC) mucosa. Gastroenterology 118: A260.

    Google Scholar 

  • Gerson JH, Bobkova E, Homsher E and Reisler E (1999) The role of residues 311/312 in actin-tropomyosin interaction. J Biol Chem 274: 17545-17550.

    Google Scholar 

  • Gimona M, Watakabe A and Helfman DM (1995) Specificity of dimer formation in tropomyosins: influence of alternatively splice exons on homodimer and heterodimer assembly. Proc Natl Acad Sc USA 92: 9776-9780.

    Google Scholar 

  • Gimona M and Small JV (1996) Calponin. In: Barany M (ed.) Biochemistry of Smooth Muscle Contraction. (pp. 91-103) Academic Press, New York.

    Google Scholar 

  • Gimona M, Watakabe A and Helfman DM (1995) Specificity of dimer formation in tropomyosins: influence of alternatively spliced exons on homodimer and heterodimer assembly. Proc Natl Acad Sc USA 92: 9776-9780.

    Google Scholar 

  • Goldmann WH (2000) Binding of tropomyosin-troponin to actin increases filament bending stiffness. Biochem Biophys Res Commun 276: 1225-1228.

    Google Scholar 

  • Golitsina NL and Lehrer SS (2000) The proximity of smooth muscle α-tropomyosin to caldesmon and actin on the muscle filament: a crosslinking study. Biophys J 78: 364A.

    Google Scholar 

  • Golitsina N, An Y, Greenfield NJ, Thierfelder L, Iizuka K, Scidman JG, Seidman CE, Lehrer SS and Hitchcock-Degregori SE (1997) Effects of two familial hypertrophic cardiomyopathy-causing mutations on α-tropomyosin structure and function. Biochemistry 36: 4637-4642.

    Google Scholar 

  • Goodwin LO, Lees MJ, Leonard MA, Cheley SB and Helfman DM (1991) Four rat tropomyosin isoforms are expressed from a single gene via alternative RNA splicing and use of two promoters. J Biol Chem 266: 8408-8415.

    Google Scholar 

  • Gregorio CC, Weber A, Bondad M, Pennise CR and Fowler VM (1995) Requirement of pointed-end capping by tropomodulin to maintain actin filament length in embryonic chicken myocytes. Nature 377: 83-86.

    Google Scholar 

  • Grabarek Z (2000) Symmetry of a coiled-coil and the formation of a 2:1 troponin-tropomyosin complex in solution. Biophys J 78: 364A.

    Google Scholar 

  • Graceffa P (1999) Movement of smooth muscle tropomyosin by myosin heads. Biochemistry 38: 11984-11992.

    Google Scholar 

  • Graceffa P (2000) Phosphorylation of smooth muscle myosin heads regulates the head induced movement of tropomyosin. J Biol Chem 275: 15143-15148.

    Google Scholar 

  • Greene LE and Eisenberg E (1980) Cooperative binding of myosin subfragment 1 to the actin-troponin-tropomysin complex. Proc Natl Acad Sc USA 77: 2616-2620.

    Google Scholar 

  • Greenfield NJ, Montelione GT, Farid RS and Hitchcock-DeGregori SH (1998) The structure of the N-terminus of striated muscle α-tropomyosin in a chimeric peptide: Nuclear magnetic structure and circular dichroism studies. Biochemistry 37: 7834-7843.

    Google Scholar 

  • Gunning P, Gordon M, Wade R, Gailman R, Lin C-S and Hardeman E (1990) Differential control of tropomyosin mRNA levels during myogenesis suggests the existence of an isoform competition-autoregulatory compensation mechanism. Dev Biol 138: 443-453.

    Google Scholar 

  • Gunning P, Hardeman E and Weinberger R (1998) Creating intracellular structural domains: spatial segregation of actin and tropomyosin isoforms in neurons. Bioessays 20: 892-900.

    Google Scholar 

  • Had L, Faivre-Sarrailh C, Legrand C, Mery J, Brugidou J and Rabie A (1994) Tropomyosin isoforms in rat neurons: the different development profiles and distributions of TM4 and TMBr-3 are consistent with different functions. J Cell Sc 2961-2973.

  • Hall CE, Jakus MA and Schmitt FO (1945) The structure of certain muscle fibrils as revealed by the use of electron stains. J Appl Phys 16: 459-465.

    Google Scholar 

  • Hammell RL and Hitchcock-DeGregori SE (1996) Mapping the functional domains within the carboxyl terminus of α-tropomyosin encoded by the alternatively spliced ninth exon. J Biol Chem 271: 4236-4242.

    Google Scholar 

  • Hammell RL and Hitchcock-DeGregori SE (1997) The sequence of the alternatively spliced sixth exon of α-tropomyosin is critical for cooperative actin binding but not for interaction with troponin. J Biol Chem 272: 22409-22416.

    Google Scholar 

  • Hanson J and Lowy J (1963) The structure of F-actin and actin filaments isolated from muscle. J Mol Biol 6: 46-60.

    Google Scholar 

  • Hanson J and Lowy J (1964) The structure of actin filaments and the origin of the axial periodicity in the I-substance of vertebrate striated muscle. Proc Roy Soc Lond B 160: 449-460.

    Google Scholar 

  • Haselgrove JC (1972) X-ray evidence for a conformational change in the actin containing filaments of vertebrate striated muscle. Cold Spring Harbor Symp. Quant Biol 37: 341-352.

    Google Scholar 

  • Heald RW and Hitchcock-DeGregori SE (1988) The structure of the amino terminus of tropomyosin is critical for the binding to actin in the presence and absence of trponin. J Biol Chem 263: 5254-5259.

    Google Scholar 

  • Heeley DA, Moir AGJ and Perry SV (1982) Phosphorylation of tropomyosin during development in mammalian striated muscle. FEBS Letts 146: 115-118.

    Google Scholar 

  • Heeley DH, Dhoot DK, Frearson N, Perry SV and Vrbova G (1983) The effect of cross innervation on the tropomyosin composition of rabbit skeletal muscle. FEBS Letts 152: 282-286.

    Google Scholar 

  • Heeley DH, Dhoot DK and Perry SV (1985) Factors determining the subunit composition of tropomyosin in mammalian muscle. Biochem J 226: 461-468.

    Google Scholar 

  • Heeley DH, Golosinska K and Smillie LB (1987) The effects of troponin T fragments T1 and T2 on the binding of non-polymerisable tropomyosin to F-actin in the presence and absence of troponin I and troponin C. J Biol Chem 262: 9971-9978.

    Google Scholar 

  • Heeley D, Watson MH, Mak AS, Dubord P and Smillie LB (1989) Effect of phosphorylation on the interaction and functional properties of rabbit striated muscle αα-tropomyosin. J Biol Chem 264: 2424-24309.

    Google Scholar 

  • Hegman TE, Lin JL-C and Lin JJ-C (1989) Probing the role of nonmuscle tropomyosin isoforms in intracellular granule movement by microinjection of monoclonal antibodies. J Cell Biol 109: 1141-1152.

    Google Scholar 

  • Helfman DM (1994) The generation of protein isoform diversity by alternative RNA splicing. Soc Gen Physiol Ser 49: 105-115.

    Google Scholar 

  • Helfman DM, Feramisco JR, Ricci WM and Hughes SH (1984) Isolation and sequence of a cDNA clone that contains the entire coding region for chicken smooth muscle α-tropomyosin. J Biol Chem 259: 14136-14143.

    Google Scholar 

  • Helfman DM, Cheley S, Kuismanen E, Finn A and Yamawaki-Katoaka Y (1986) Nonmuscle and muscle tropomyosins are expressed from a single gene by alternate splicing and polyadenylation. Mol Cell Biol 6: 3582-3595.

    Google Scholar 

  • Hendricks M and Weintraub H (1981) Tropomyosin is decreased in transformed cells. Proc Natl Acad Sc USA 78: 5633-5637.

    Google Scholar 

  • Hill LE, Mehegan JP, Butters CA and Tobacman LS (1992) Analysis of troponin-tropomyosin binding to actin. Troponin does not promote interactions between tropomyosin molecules. J Biol Chem 267: 16106-16113.

    Google Scholar 

  • Hirano K, HIrano M, Eto W, Nishimura J and Kanaide H (2000) Mitogen induced up-regulation of non-smooth muscle isoform of α-tropomyosin in rat aortic smooth muscle cells. Eur J Pharm 406: 209-218.

    Google Scholar 

  • Hitchcock-DeGregori SE (1994) Structural requirements of tropomyosin for binding to filamentous actin. In: Este JE and Higgins PJ (eds) Actin: Biophysics and Cell Biology. (pp. 85-96) Plenum Press, New York.

    Google Scholar 

  • Hitchcock-DeGregori SE and Heald RW (1987) Altered actin and troponin binding of amino-terminal variants of chicken striated muscle α-tropomyosin expressed in Escherichia coli. J Biol Chem 262: 9730-9735.

    Google Scholar 

  • Hitchcock-DeGregori SE, Lewis SF and Mistrik M (1988a) Lysine reactivities of tropomyosin complexed with troponin. Arch Biochem Biophys 264: 410-416

    Google Scholar 

  • Hitchcock-DeGregori SE, Sampath P and Pollard (1988b) Tropomyosin inhibits the rate of actin polymerisation by stabilising actin filaments. Biochemistry 279: 9182-9185.

    Google Scholar 

  • Hitchcock-DeGregori SE and Varnell TN (1990) Tropomyosin has discrete actin-binding sites with sevenfold and fourteen fold periodicities. J Mol Biol 214: 885-896.

    Google Scholar 

  • Hitchcock-DeGregori SE and An Y (1996) Integral repeats and a continuous coiled coil are required for binding of striated muscle tropomyosin in the regulated actin filament. J Biol Chem 271: 3600-3603.

    Google Scholar 

  • Hnath EJ, Wang C-LA, Huber PA, Marston SB and Phillips GN (1996) Affinity and structure of complexes of tropomyosin and caldesmon domains. Biophys J 71: 1920-1933.

    Google Scholar 

  • Hodges RS and Smillie LB (1970) Chemical evidence for chain heterogencity in rabbit muscle tropomyosin. Biochem Biophys Res Commun 41: 987-994.

    Google Scholar 

  • Hodgkinson JL (2000) Actin and the smooth muscle proteins: a structural perspective J Muscle Res Cell Motil 21: 115-130.

    Google Scholar 

  • Hoit BD, Prabhaka R, Tramuta DA, Bovin GP and Weiczorek D (1999) Influence of the α-tropomyosin 180 mutation on in vivo left ventricular systolic and diastolic function. Circulation 100: I-761.

    Google Scholar 

  • Holmes KC (1985) The actomyosin interaction and its control by tropomyosin. Biophys J 68(Suppl.): 2-7.

    Google Scholar 

  • Horiuchi KY and Chacko S (1988) Interaction between caldesmon and tropomyosin in the presence and absence of smooth muscle actin. Biochemistry 27: 8388-8393.

    Google Scholar 

  • Huxley HE (1960) In: Brachet J and Mirsky AE (eds) The Cell: Biochemistry, Physiology, Morphology. (vol I, pp. 365-481) Academic Press, New York.

    Google Scholar 

  • Huxley HE (1970) Structural changes in muscle and muscle proteins during contraction. 8th Intnl Congr. Biochem Interlaken.

  • Huxley HE (1971) Structural changes during muscle contraction. Biochem J 125: 85p.

    Google Scholar 

  • Huxley HE (1972) Structural changes in the actin-and myosin-containing filaments during contraction. Cold Spring Harbor Symp. Quant Biol 37: 361-376.

    Google Scholar 

  • Itoh T, Ikebe M, Kargarcin GJ, Hartshorne DJ, Kemp BA and Fay FS (1989) Effects of modulators of myosin light kinase activity on single smooth muscle cells. Nature 338: 164-167.

    Google Scholar 

  • Jackson P, Amphlett GW and Perry SV (1975) The primary structure of troponin T and the interaction with tropomyosin. Biochem J 151: 85-97.

    Google Scholar 

  • Jancso A and Graceffa P (1991) Smooth muscle tropomyosin coiledcoil dimers. Subunit composition, assembly and end-to-end interaction. J Biol Chem 266: 5891-5897.

    Google Scholar 

  • Jenkins RE, Taylor MJ, Gilvary NJ and Bianco AE (1998) Tropomyosin antibodies implicated in host protective responses to microfilariae in onchocerciasis. Proc Natl Acad Sc USA 95: 7550-7555.

    Google Scholar 

  • Johnson P and Blazyk JM (1978) Involvement of an arginine residue of actin in tropomyosin binding. Biochem Biophys Res Commun 82: 1013-1018.

    Google Scholar 

  • Johnson P and Smillie LB (1975) Rabbit skeletal α-tropomyosin chains are in register. Biochem Biophys Res Commun 64: 1316-1322.

    Google Scholar 

  • Johnson P and Smillie LB (1977) Polymerisability of rabbit skeletal tropomyosin: effects of enzymic and chemical modifications. Biochemistry 16: 2264-2269.

    Google Scholar 

  • Kabsch W and Vanderkhove J (1992) Structure and function of actin. Ann Rev Biomol Struct 21: 49-76.

    Google Scholar 

  • Kaminer B and Szonyi EJ (1972) Tropomyosin in electric organ of eel and torpedo. J Cell Biol 55: 129a.

    Google Scholar 

  • Kang BC (1990) Cockroach allergy. Clin Rev Allergy 8: 87-98.

    Google Scholar 

  • Karibe A, Bachinski LA, Arai AE, Tripody D, Roberts R and Fanananapazir L (1999) Familial hypertrophic cardiomyopathy caused by a novel alpha-tropomyosin mutation (Val95Ala) is associated with mild cardiac hypertrophy but a high incidence of sudden death. Circulation 100:I 619.

    Google Scholar 

  • Katz AM (1964) Influence of tropomyosin upon the reactions of actomyosin at low ionic strength. J Biol Chem 239: 3304-3311.

    Google Scholar 

  • Kawamura M and Maruyama K (1970) Electron microscopic particle length of F-actin in vitro. J Biochem 67: 437-457.

    Google Scholar 

  • Keiser T and Wegner A (1985) Isolation from bovine brain of tropomyosins that bind to actin filaments with different affinities. FEBS Lett 187: 76-80.

    Google Scholar 

  • Kesari KV, Yoshizaki N, Geng X, Lin JJC and Das KM (1999) Externalisation of tropomyosin isoform 5 in colon epithelial cells. Clin Exp Immunol 118: 219-227.

    Google Scholar 

  • Kimura S, Ichikawa A, Ishizuka J, Ohkouchi S, Kake T and Maruyama K (1999) Tropomodulin isolated from rabbit skeletal muscle inhibits filament formation of actin in the presence of troponin and tropomyosin. Eur J Biochem 263: 396-401.

    Google Scholar 

  • Khanna AK, Nomura Y, Fischetti VA and Zabriskie JB (1997) Antibodies in the sera of acute rheumatic fever patients bind to human cardiac tropomyosin. J Autoimmun 10: 99-106.

    Google Scholar 

  • Kobayasi T, Kobayashi M, Gryczynski Z, Lakowitz R and Collins JH (2000) Inhibitory region of troponin: Ca2+ dependent structural and environmental changes in the troponin-tropomyosin complex and in reconstituted thin filaments. Biochemistry 39: 86-91.

    Google Scholar 

  • Kojima H, Ishijima A and Yanagida Y (1994) Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation. Proc Natl Acad Sc USA 91: 12962-12966.

    Google Scholar 

  • Kominz DR (1966) Interactions of calcium and native tropomyosin with myosin and heavy meromyosin. Arch Biochem Biophys 115: 583-592.

    Google Scholar 

  • Kominz DR, Saad F and Laki K (1957) Vertebrate and invertebrate tropomyosins Nature 179: 206-207.

    Google Scholar 

  • Korman VL and Tobacman L (1998). The use of yeast actin mutants to probe the interactions among the cardiac thin filament proteins during the contraction cycle. Biophys J 74: A347.

    Google Scholar 

  • Korman V and Tobacman LS (2000) Actin subdomain 4 mutation D222A/E224A/E226A alters tropomyosin binding to actin. Biophys J 78: 436A

    Google Scholar 

  • Korman VL, Hatch V, Dixon KY, Craig, R, Lehman W and Tobacman LS (2000) An actin subdomain 2 mutation that impairs thin filament regulation by troponin and tropomyosin. J Biol Chem 275: 22470-22478.

    Google Scholar 

  • Kostyukova A, Maeda K, Yamauchi E, Kreiger I and Maeda Y (2000) Domain structure of tropomodulin. Distinct properties of the N-terminal and C-terminal halves. Eur J Biochem 267: 6470-6475.

    Google Scholar 

  • Kress M, Huxley HE, Faruqi AR and Hendrix J (1986) Structural changes during activation of frog muscle studied by time resolved X-ray diffraction. J Mol Biol 188: 325-342.

    Google Scholar 

  • Kuo-Kang W, Kang B and Rubenstein PA (2000) Tropomyosin-dependent filament formation by a polymerization-defective mutant yeast actin (V266G,L267G). J Biol Chem 275: 40594-40600.

    Google Scholar 

  • Laki K and Cairns J (1959) Tropomyosin content of actin preparations. Federation Proc 18: 85.

    Google Scholar 

  • Laing NG, Wilton SD, Akkari PA, Dorosz S, Boundy K, Kneebone C Blumbergs, White S, Watkins S, Love DR and Haan E (1995) A mutation in the α-tropomyosin gene TPM 3 associated with autosomal dominant nemaline myopathy. Nature Genetics 9: 75-79.

    Google Scholar 

  • Laki K, Maruyama K and Kominz DR (1962) Arch Biochem Biophys 98: 323.

    Google Scholar 

  • Lal AA and Korn ED (1986) Effect of muscle tropomyosin on the kinetics of polymerisation of muscle actin. Biochemistry 25: 1154-1158.

    Google Scholar 

  • Landis CA, Bobkova A, Homsher E and Tobacman LS (1997) The active state of the thin filament is destabilised by an internal deletion in tropomyosin. J Biol Chem 272: 14051-14056.

    Google Scholar 

  • Landis CA, Back N, Homsher E and Tobacman LS (1999) Effects of tropomyosin internal deletions on thin filament function. Biophys J 76: A154.

    Google Scholar 

  • Landschultz WH, Johnson PF, and McKnight SL (1988) The leucine zipper. A hypothetical structure common to a new class of DNA-binding proteins. Science 240: 1759-1764.

    Google Scholar 

  • Lau SYM, Sanders C and Smillie LB (1985) Amino acid sequences of chicken gizzard γ-tropomyosin. J Biol Chem 260: 7257-7263.

    Google Scholar 

  • Lazarides E (1975) Tropomyosin antibody: the specific localisation of tropomyosin in non-muscle cells. J Cell Biol 65: 549-561.

    Google Scholar 

  • Lazarides E (1976) J Supramol Struct 5: 531-563.

    Google Scholar 

  • Lees-Miller JP and Helfman DM (1991) The molecular basis for tropomyosin isoform diversity. Bioessays 13: 429-437.

    Google Scholar 

  • Lees-Miller JP, Goodwin LO and Helfman DM (1990a) Three novel brain tropomyosin isoforms are expressed from the rat α-tropomyosin gene through the use of alternative promoters and alternative RNA processing. Mol Cell Biol 10: 1729-1742.

    Google Scholar 

  • Lees-Miller JP, Yan A and Helfman DM (1990b) Structure and complete nucleotide sequence of the gene encoding rat fibroblast tropomyosin 4. J Mol Biol 213: 339-405.

    Google Scholar 

  • Leger J, Bouvert P, Schwartz K and Swynghedauw B (1976) A comparative study of skeletal and cardiac tropomyosins. Pflugers Archiv 362: 271-277.

    Google Scholar 

  • Lehman W, Denault D and Marston SB (1993) The caldesmon content of vertebrate smooth muscle. Biochim Biophys Acta 1203: 53-59.

    Google Scholar 

  • Lehman W, Craig R and Vibert P (1994). Ca2+-induced tropomyosin movement in Limulus thin filaments revealed by three-dimensional reconstruction. Nature 368: 65-67.

    Google Scholar 

  • Lehman W, Vibert P, Uman P and Craig R (1995) Steric blocking mechanism visualised in relaxed vertebrate muscle thin filaments. J Mol Biol 251: 191-196.

    Google Scholar 

  • Lehman W, Vibert P, Craig R and Barany M (1996) Actin and the structure of smooth muscle thin filaments. In: Barany M (ed.) Biochemistry of Smooth Muscle Contraction. (pp. 47-60) Academic Press, New York.

    Google Scholar 

  • Lehman W, Hatch V, Korman V, Rosol M, Thomas L, Maytum R, Geeves MA, Van Eyk JE, Tobacman LS and Craig R (2000a) Tropomyosin and actin isoforms modulate the localisation of tropomyosin strands on actin filaments. J Mol Biol 302: 593-606.

    Google Scholar 

  • Lehman W, Rosol M, Hatch V, Korman V, Horowitz R, Van Eyk J, Tobacman LS and Craig R (2000b) Tropomyosin control of thin filament activity revealed by electron microscopy and 3D reconstruction. Biophys J 78: 399A.

    Google Scholar 

  • Lehman W, Rosol M, Tobacman LS, and Craig R (2001) The structural organization of troponin-tropomyosin on thin filaments. Biophys J 80: 356A.

    Google Scholar 

  • Lehrer SS (1975) Intramolecular crosslinking of tropomyosin via disulphide bond formation: evidence for chain register. Proc Natl Acad Sc USA 72: 3377-3381.

    Google Scholar 

  • Lehrer SS (1994) The regulatory switch of muscle thin filaments. Ca2+ or myosin heads. J Muscle Res Cell Motil 15: 232-236.

    Google Scholar 

  • Lehrer SS and Geeves MA (1998) The muscle thin filament as a classical cooperative/allosteric regulatory system. J Mol Biol 277: 1081-1089.

    Google Scholar 

  • Lehrer SS and Morris EP (1982) Dual effects of tropomyosin and troponin-tropomyosin on actin subfragment 1 ATPase. J Biol Chem 257: 8073-8080.

    Google Scholar 

  • Lehrer SS and Stafford III WF (1991) Preferential assembly of the tropomyosin heterodimer: equilibrium studies. Biochemistry 30: 5682-5688.

    Google Scholar 

  • Lehrer SS, Qian Y and Hvidt S (1989) Assembly of the native heterodimer of Rana esculenta tropomyosin by chain exchange. Science 246: 926-928.

    Google Scholar 

  • Lehrer SS, Chai M and Geeves MA (1997a) Effect of troponin I (TNI) on actin S1 ATPase and S1 binding in the absence and presence of rabbit skeletal tropomyosin. Biophys J 72: A60.

    Google Scholar 

  • Lehrer SS, Golotsina NL and Geeves MA (1997b) Actin-tropomyosin activation of myosin subfragment 1 ATPase and thin filament cooperativity. The role of tropomyosin flexibility and end to end interactions. Biochemistry 36: 13449-13454.

    Google Scholar 

  • Leonardi CL, Warre RH and Rubin RW (1982) Lack of tropomyosin correlates with the absence of stress fibres in transformed rat kidney cells. Biochim Biophys Acta 720: 154-162.

    Google Scholar 

  • Leung PS, Chu KH, Chow WK, Ansri A, Bandea CI, Kwan HS, Nagy SM and Gershwin ME (1994) Cloning, expression and primary structure of Metpeneaus ensis tropomyosin, the major heat stable shrimp allergen. J Allergy Clin Immunol 94: 882-890.

    Google Scholar 

  • Leung PS, Chow WK, Duffey S, Ansari A, Bandea CI, Kwan HS, Nagy SM and Gerswin ME (1996) IgE reactivity against cross reactive allergen in crustacea and mollusca: evidence for tropomyosin as a common antigen. J Allergy Clin Immunol 98: 954-961.

    Google Scholar 

  • Levine BA, Patchell VB and Perry SV. (1999) Troponin I and conformational changes in actin. J Muscle Res Cell Motil 20: 828-829.

    Google Scholar 

  • Levitsky DI, Rostkova EV, Orlov VN, Nikolaeva OP, Moiseeva LN, Teplova MV and Gusev NB (2000) Complexes of smooth muscle tropomyosin with F-actin studied by differential scanning calorimetry. Eur J Biochem 267: 1869-1877.

    Google Scholar 

  • Lewis WG and Smillie LB (1980) The amino acid sequence of rabbit cardiac tropomyosin. J Biol Chem 255: 6854-6859.

    Google Scholar 

  • Lewis WG, Cote GP, Mak S and Smillie LB (1983) Amino acid sequence of equine platelets. Correlation with interaction properties. FEBS 156: 269-273.

    Google Scholar 

  • Lin JJ-C, Helfman D.M., Hughes SH and Chou C-S (1985) Tropomyosin isoforms in chicken embryo fibroblasts: purification, characterisation and changes in Rous sarcoma virus-transformed cells. J Cell Biol 100: 692-703.

    Google Scholar 

  • Lin JJ, Hegman TE and Lin JJ-C (1988) Differential localisation of tropomyosin isoforms in cultured non-muscle cells. J Cell Biol 107: 563-572.

    Google Scholar 

  • Lin JJ, Warren KS, Wamboldt DD, Wang T and Lin J L-C (1997) Tropomyosin isoforms in non-muscle cells. Int Rev Cytol 170: 1-38.

    Google Scholar 

  • Liu H and Bretscher A (1989) Disruption of the single tropomyosin gene in yeast results in the disappearance of actin cable from the cytoskeleton. Cell 57: 233-242.

    Google Scholar 

  • Liu H and Bretscher A (1992) Characterisation of TMP1 disrupted yeast cells indicates an involvement of tropomyosin in directed vesicular transport. J Cell Biol 118: 285-299.

    Google Scholar 

  • Lorenz M, Poole KJV, Popp D, Rosenbaum G and Holmes KC (1995) An atomic model of the unregulated thin filament obtained by X-ray fiber diffraction on oriented actin-tropomyosin gels. J Mol Biol 246: 108-119.

    Google Scholar 

  • Lowy J and Small JV (1970) The organisation of myosin and actin in vertebrate smooth muscle. Nature 227: 46-51.

    Google Scholar 

  • Lowy J and Vibert PJ (1972) Studies of the low-angle X-ray pattern of molluscan smooth muscle during tonic contraction and rigor. Cold Spring Harbor Symp. Quant Biol 37: 353-359.

    Google Scholar 

  • MacLeod AR and Gooding C (1988) Human hTMα gene: expression in muscle and non-muscle tissue. Mol Cell Biol 8: 433-440.

    Google Scholar 

  • Macleod AR, Houlker C, Reinach FC, Smillie LB Talbot K, Modi G and Walsh FS (1985) A muscle-type tropomyosin in human fibroblasts: evidence for expression by an alternative RNA splicing mechanism. Proc Natl Acad Sc USA 82: 7835-7839.

    Google Scholar 

  • Macleod AR, Talbot K, Smillie LB and Houlker C (1987) Characterisation of a cDNA defining a gene family encoding TM30pl, a human fibroblast tropomyosin. J Mol Biol 194: 1-10.

    Google Scholar 

  • Mak A and Smillie LB (1981) Non polymerisable tropomyosin: preparation, some properties and F-actin binding. Biochem Biophys Res Commun 101: 2208-214.

    Google Scholar 

  • Mak A, Smillie LB and Barany M (1978) Specific phosphorylation at serine-283 of α-tropomyosin from frog skeletal and rabbit skeletal and cardiac muscle. Proc Natl Acad Sci USA 75: 3588-3592.

    Google Scholar 

  • Marston SB (1990) Stoichiometry and stability of caldesmon in native thin filaments from sheep aorta smooth muscle. Biochem J 272: 305-310.

    Google Scholar 

  • Marston SB and Redwood CS (1991) The molecular anatomy of caldesmon. Biochem J 279: 1-16.

    Google Scholar 

  • Marston SB and Redwood CS (1993) The essential role of tropomyosin in cooperative regulation of smooth muscle thin filament activity by caldesmon. J Biol Chem 268: 12317-12320.

    Google Scholar 

  • Marston SB and Huber PA (1996) Caldesmon. In: Barany M (ed.) Biochemistry of Smooth Muscle Contraction. (pp. 77-90) Academic Press, New York.

    Google Scholar 

  • Marston SB, Burton D, Copeland O, Fraser A, Gao Y, Hodgkinson P, Huber PA, Levine B, El-Mezgueldi M and Notoriani G (1998) Structural interactions between actin, tropomyosin, caldesmon and calcium binding protein and the regulation of smooth muscle thin filaments. Acta Physiol Scand 164: 401-414.

    Google Scholar 

  • Martonosi A (1962) Studies on actin. VII Ultracentrifugal analysis of partially polymerised actin solutions. J Biol Chem 237: 2795-2803.

    Google Scholar 

  • Maruyama K (1964) Interaction of tropomyosin with actin. A flow birefringence study. Arch Biochem Biophys 105: 142-150.

    Google Scholar 

  • Matsumura F and Yamashiro-Matsumura S (1985) Purification and characterisation of multiple isoforms of tropomyosin from rat cultured cells. J Biol Chem 259260: 13851-13859.

    Google Scholar 

  • Matsumura F and Yamashiro S (1993) Caldesmon. Curr Opin Cell Biol 5: 70-76.

    Google Scholar 

  • Matsumura F, Yamashiro-Matsumura S and Lin JJ-C (1983a). Isolation and characterisation of tropomyosin-containing microfilaments from cultured cells. J Biol Chem 258: 6636-6644.

    Google Scholar 

  • Matsumura F, Lin JJ-C, Yamashiro-Matsumura S, Thomas GP and Topp WC (1983b) Differential expression of tropomyosin forms in the microfilaments isolated from normal and transformed rat cultured cells. J Biol Chem 258: 13954-13964.

    Google Scholar 

  • Matsuura Y, Stewart M, Kawamoto M, Kamiya N, Saeki K, Yasunaga T and Wakabayashi T (2000) Structural basis for the higher Ca2+ activation of the regulated myosin ATPase observed with Dictyostelium/tetrahymena actin chimeras. J Mol Biol 296: 579-595.

    Google Scholar 

  • Maupin-Szamier P and Pollard T (1978) Actin filament destruction by osmium tetroxide. J Cell Biol 77: 837-852.

    Google Scholar 

  • Maytum R, Geeves MA and Konrad M (2000) Actomyosin regulatory properties of yeast tropomyosin are dependent upon N-terminal modifications. Biochemistry 39: 11913-11920.

    Google Scholar 

  • McElhinny AS, Kolmerer B, Fowler VM, Labeit S and Gregorio CC (2001) The N-terminal of nebulin interacts with tropomodulin at the pointed ends of thin filaments. J Biol Chem 276: 583-592.

    Google Scholar 

  • McGhee JD and von Hippel PH (1974) Theoretical aspects of DNA-protein interaction. Co-operative and non-cooperative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol 86: 469-489.

    Google Scholar 

  • McKillop DFA and Geeves MA (1993) Regulation of the interaction between actin and myosin subfragment 1: evidence of three states of the thin filament. Biophys J 65: 693-701.

    Google Scholar 

  • McLachlan AD and Stewart M (1975) Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. J Mol Biol 98: 293-304.

    Google Scholar 

  • McLachlan AD and Stewart M (1976) The 14-fold periodicity in α-tropomyosin and the interaction with actin. J Mol Biol 103: 271-298.

    Google Scholar 

  • Michele DE and Metzger JM (2000) Differential effects of tropomyosin mutants associated with cardiac and skeletal myopathies on intact myocyte function. Biophys J 8: 399A.

    Google Scholar 

  • Michele DE, Albayya FP and Metzger JM (1999) A nemaline myopathy mutation in α-tropomyosin causes defective regulation of striated muscle force production. J Clin Invest 104: 1575-1581.

    Google Scholar 

  • Miki M (1989) Interaction of Lys-61 labelled actin with myosin subfragment 1 and the regulatory proteins. J Biochem 106: 651-655.

    Google Scholar 

  • Miki M and Hozumi T (1991) Interaction of maleimidobenzoyl actin with myosin subfragment 1 and tropomyosin-troponin. Biochemistry 30: 5625-5630.

    Google Scholar 

  • Milligan RA and Flicker PF (1987) Structural relationships of actin, myosin and tropomyosin revealed by cryo-electron microscopy. J Cell Biol 105: 29-39.

    Google Scholar 

  • Milligan RA, Whittaker M and Safer D (1990) Molecular structure of F-actin and location of surface binding site. Nature 348: 217-221.

    Google Scholar 

  • Miyazawa H, Fukamachi H, Inagaki Y, Rees EG, Daul CB, Lehrer SB, Inouye S and Sakaguchi M (1996) Identification of the first major allergen of a squid (Todarodes pacificus). J. Allergy Clin Immunol 98: 948-953.

    Google Scholar 

  • Mogensen J, Klausen IC, Pedersen AK, Egeblad H, Bross P, Kruse TA, Gregersen N, Hansen PS, Baandrup U and Borglum AD (1999) α-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J Clin Invest 103: R39-R43.

    Google Scholar 

  • Montarass D, Fiszman MY and Gros F (1981) Characterisation of the tropomyosin present in various chick embryo muscle types and in muscle cells differentiated in vitro. J Biol Chem 256: 4081-4086.

    Google Scholar 

  • Monteira PB, Lataro RC, Ferro JA and Reinach FdeC (1994) Functional α-tropomyosin produced in Escherichia coli. A dipeptide extension can substitute for the terminal acetyl group. J Biol Chem 269: 10461-10466.

    Google Scholar 

  • Montgomery K and Mak AS (1984) In vitro phosphorylation of tropomyosin by a kinase from chicken embryo. J Biol Chem 259: 5555-5560.

    Google Scholar 

  • Moody C, Lehman W and Craig R (1990) Caldesmon and the structure of smooth muscle thin filaments: electron microscopy of isolated thin filaments. J Muscle Res Cell Motil 11: 176-185.

    Google Scholar 

  • Moore GE and Schachat FH (1985) Molecular heterogeneity of histochemical fibre types: a comparison of fast fibres. J Muscle Res Cell Motil 6: 513-524.

    Google Scholar 

  • Moore PB, Huxley HE and DeRosier DJ (1970) Three dimensional reconstruction of F-actin, thin filament and decorated thin filaments. J Mol Biol 50: 2279-2295.

    Google Scholar 

  • Moraczewska J and Hitchcock-DeGregori SE (2000) Independent functions for the N-and C-termini in the overlap region of tropomyosin. Biochemistry 39: 6891-6897.

    Google Scholar 

  • Moraczewska J, Nicholson-Flynn K and Hitchcock-DeGregori SE (1999) The ends of tropomyosin are major determinants of actin affinity and myosin subfragment 1-induced binding to F-actin in the open state. Biochemistry 38: 15885-15892.

    Google Scholar 

  • Moraczewska J, Greenfield NJ, Liu Y and Hitchcock-DeGregori SE (2000) Alteration of tropomyosin function and folding by a nemaline myopathy-causing mutation. Biophys J 79: 3217-3225.

    Google Scholar 

  • Morris E and Lehrer SS (1984) Troponin-tropomyosin interactions. Fluorescent studies of the binding of troponin, troponin T and chymotryptic troponin T fragments to specifically labelled tropomyosin. Biochemistry 23: 2214-2220.

    Google Scholar 

  • Muthuchamy M, Rethinasamy P and Wieczorek DF (1997) Tropomyosin structure and function — New insights. Trends Cardiovasc Med 7: 124-128.

    Google Scholar 

  • Nagashima H and Asakura S (1982) Studies on co-operative properties of tropomyosin-actin and tropomyosin-troponin-actin complexes by the use of NEM-treated and untreated species of myosin subfragment 1. J Mol Biol 155: 409-428.

    Google Scholar 

  • Nakajima-Taniguchi C, Matsui H, Nagata S, Kishimoto T and Yamauchi-Takihara K (1995) Novel missense mutation in α-tropomyosin gene found in Japanese patients with hypertrophic cardiomyopathy. J Mol Cell Cardiol 27: 2053-2058.

    Google Scholar 

  • Nakamura F, Mino T, Yamamoto J, Naka M and Tanaka T (1993) Identification of the regulatory site on smooth muscle calponin that is phosphorylated by protein kinase A. J Biol Chem 268: 6194-6201.

    Google Scholar 

  • Niitsu Y, Yoshizaki N, Sakamaki S, Takayanagi N, Hayashi S and Kawano Y (2000) HLA-DPB1 allele, genotype of DPW9, is associated with susceptibility to ulcerative colitis and autoantibody production against tropomyosin peptide. Gastroenterology 118: A355.

    Google Scholar 

  • Novy RE, Sellers JR, Liu L-F and Lin JJ-C (1993a) In vitro functional characterisation of bacterially expressed human fibroblast tropomyosin isoforms and their chimeric mutants. Cell Motil Cytoskel 26: 248-261.

    Google Scholar 

  • Novy RE, Liu L-F, Lin C-S, Helfman DM and Lin J J-C (1993b) Expression of smooth muscle and non-muscle tropomyosins in Escherichia coli and characterisation of bacterially produced tropomyosins. Biochim Biophys Acta 1162: 255-265.

    Google Scholar 

  • O'Brien EJ, Bennet PM and Hanson J (1971) Optical diffraction studies of myofibrillar structure. Phil Trans Roy Soc Lond B 261: 201-208.

    Google Scholar 

  • Ogut O (2000) Interaction of troponin T isoforms with troponin I and tropomyosin. Biophys J 78: 364A

    Google Scholar 

  • Ogut O and Jin J-P (2000) Cooperative interaction between developmentally regulated troponin T and tropomyosin isoforms in the absence of F-actin. J Biol Chem 275: 26089-26095.

    Google Scholar 

  • Olson TM, Kishimoto MY, Whitby FG and Michels V (2001) Mutations predicted to alter the surface charge of alpha tropomyosin cause dilated cardiomyopathy. J Molec Cellular Cardiol (in press).

  • Onuma EK, Amenta PS, Ramaswamy K, Lin JJ-C and Das DM (2000) Autoimmunity in ulcerative colitis (UC): a predominantly colonic mucosal B cell response against human tropomyosin isoform 5. Clin Exp Immunol 121: 466-471.

    Google Scholar 

  • Orlov VN, Rostkova EV, Nikolaev, OP Drachev VA, Gusev NB and Levittsky, DI (1998) Thermally induced exchange of smooth muscle dimers studied by differential scanning calorimetry. FEBS Lett 433: 241-244.

    Google Scholar 

  • Otey CA, Kalnoski MH and Bulinsk JC (1988) Immunolocalization of muscle and non-muscle isoforms of actin in myogenic cells and adult skeletal muscle. Cell Motil Cytoskel 9: 337-348.

    Google Scholar 

  • Otsuki I (1971) Molecular arrangement of troponin T in the thin filament. J Biochem 86: 491-497.

    Google Scholar 

  • Panzani RC (1994) Inhalant allergy to arthropods (to the exclusion of mites) (part ii). Allergol Immunopathol 22: 167-177.

    Google Scholar 

  • Payne MR and Rudnick SE (1984) Tropomyosin as a modulator of microfilaments. TIBS-August, 361-363.

  • Parry DAD (1974) Structural studies on the tropomyosin/troponin complex of vertebrate skeletal muscle. Biochem Biophys Res Commun 57, 216-224.

    Google Scholar 

  • Parry DAD and Squire JM (1973) Structural role of tropomyosin in muscle regulation: analysis of the X-ray diffraction patterns for relaxed and contracting muscles. J Mol Biol 75: 35-55.

    Google Scholar 

  • Pearlstone JR and Smillie LS (1983) Effects of troponin I plus C on the binding of troponin-T and its fragments to α-tropomyosin. J Biol Chem 258: 2534-2542.

    Google Scholar 

  • Peiples K and Wieczorek DF (1999) Characterisation and expression of tropomyosin 30 (TM3). Biophys J 76: A41.

    Google Scholar 

  • Peiples K and Wieczorek DF (2000) Tropomyosin 3 increases striated muscle diversity. Biochemistry 39: 8291-8297.

    Google Scholar 

  • Percival JM, Thomas G, Cock TA, Gardiner EM, Jeffery PL, Lin JJC, Weinberger RP and Gunning P (2000) Sorting of tropomyosin isoforms in synchronised NIH 3T3 fibroblasts: evidence for distinct microfilament populations. Cell Motil Cytoskel 47: 189-208.

    Google Scholar 

  • Perry SV (1996) Molecular Mechanisms in Striated Muscle. Cambridge University Press, Cambridge.

    Google Scholar 

  • Perry SV (1997) Fate has smiled kindly. In: Semenza G and Jaenicke (eds) Comprehensive Biochemistry (vol. 40, pp. 383-462) Elsevier Science.

  • Perry SV (1998) Troponin T: genetics, properties and function. J Muscle Res Cell Motil 19: 575-602.

    Google Scholar 

  • Perry SV (1999) Troponin I: Inhibitor or facilitator. Mol Cell Biochem 190: 9-32.

    Google Scholar 

  • Perry SV, Cole HA, Head JF and Wilson FJ (1972) Localisation and mode of action of the inhibitory component of the troponin complex. Cold Spring Harbor Symp. Quant Biol 37: 251-262.

    Google Scholar 

  • Perry SV, Cole HA, Morgan M, Moir AJG and Pires E (1975) Phosphorylation of the proteins of the myofibril. Proc 9th Meet Fed Eur Biochem Soc (vol. 31, pp. 163-176) Amsterdam, North Holland.

    Google Scholar 

  • Perry SV and Corsi A (1958) Extraction of proteins other than myosin from the isolated rabbit myofibril. Biochem J 68: 5-12.

    Google Scholar 

  • Phillips GN Jr, Lattman EE, Cummins P, Lee KY and Cohen C (1979) Crystal structure and molecular interactions of tropomyosin. Nature 278: 413-417.

    Google Scholar 

  • Phillips GN Jr, Filler JP and Cohen C (1986) Tropomyosin crystal structure and muscle regulation. J Mol Biol 192: 111-131.

    Google Scholar 

  • Phillips JR, Cohen C and Stewart M (1987) A new crystal form of tropomyosin. J Mol Biol 195: 219-223.

    Google Scholar 

  • Pittenger MF and Helfman DM (1992) In vitro and in viro characterisation of four fibroblast tropomyosins produced in bacteria: TM-2, TM-3, TM-5a and TM-5b are co-localised in interphase fibroblasts. J Cell Biol 118: 841-858.

    Google Scholar 

  • Pittenger, MF, Kazzaz JA, and Helfman DM (1994) Functional properties of non-muscle tropomyosin isoforms. Curr Opin Cell Biol 6: 96-104.

    Google Scholar 

  • Pittenger MF, Kistler A and Helfman DM (1995) Alternatively spliced exons of the β-tropomyosin gene exhibit different affinities for F-actin and effects with non-muscle caldesmon. J Cell Sc 108: 3253-3265.

    Google Scholar 

  • Poole KJV, Evan G, Rosenbaum G, Lorenz M and Holmes KC (1995) The effect of cross bridges on the calcium sensitivity of the structural change of the regulated thin filament. Biophys J 68: 365A.

    Google Scholar 

  • Potter JD and Gergely J (1974) Troponin, tropomyosin and actin interactions in the Ca2+ regulation of muscle contraction. Biochemistry 13: 2697-2703.

    Google Scholar 

  • Pragay DR and Gergely J (1968) Effect of tropomyosin on the polymerisation of ATP-G-actin and ADP-G-actin. Arch Biochem Biophys 125: 727-733.

    Google Scholar 

  • Pratje E and Heilmeyer LMG Jr (1972) Phosphorylation of rabbit muscle troponin and actin by 3′-5′-cAMP dependent protein kinase. FEBS Letts 27: 89-93.

    Google Scholar 

  • Rayment I, Holden HM, Whittaker M, Yoyn CB, Lorenz M, Holmes KC and Milligan RA (1993) Structure of the actin-myosin complex and its implications for muscle contraction. Science 261: 58-65.

    Google Scholar 

  • Redwood CS and Marston SB (1993) Binding and regulatory properties of expressed functional domains of chicken gizzard smooth muscle caldesmon. J Biol Chem 268: 10969-10976.

    Google Scholar 

  • Redwood CS, Moolman-Smook JC and Watkins H (1999) Properties of mutant contractile proteins that cause hypertrophic cardiomyopathy. Cardiovascular Res 41: 20-36.

    Google Scholar 

  • Redwood CS, Marston SB, Bryan J, Cross RA and Kendrick-Jones J (1990) The functional properties of full length and mutant chicken gizzard smooth muscle caldesmon in E. coli. FEBS Lett 327: 53-56.

    Google Scholar 

  • Reese G, Jeung BJ, Daul CB and Lehrer SB (1997) Characterization of recombinant shrimp allergen Pen a 1 (tropomyosin). Int Arch Allergy Immunol 113: 240-242.

    Google Scholar 

  • Reese G, Ayuso R and Lehrer SB (1999) Tropomyosin: An invertebrate pan-allergen. Arch Allergy Immunol 119: 247-258.

    Google Scholar 

  • Regitz-Zagrosek V, Erdmann J, Wellnofer E, Raible J and Fleck E (2000) Novel mutation in the α-tropomyosin gene and transition from hypertrophic to hypocontractile dilated cardiomyopathy. Circulation 102: E112-E116.

    Google Scholar 

  • Ribolow H and Barany M (1977) Phosphorylation of tropomyosin in live frog muscle. Arch Biochem Biophys 179: 718-720.

    Google Scholar 

  • Robinson JM, Xing J, Dong WJ and Cheung HC (2000) Acrylamide quenching of two single tryptophan mutants of cardiac troponin T reveals microenvironmental changes upon complexation with tryptophanless, troponin-C, troponin-I and/or tropomyosin. Biophys J 78: 365A.

    Google Scholar 

  • Rosol M, Lehman W, Craig R, Landis C, Butters C and Tobacman LS (2000) Three-dimensional reconstruction of thin filaments containing mutant tropomyosin. Biophys J 78: 908-917.

    Google Scholar 

  • Ruiz-Opazo N and Ginard GB (1987) α-tropomyosin gene organisation. Alternative splicing of duplicated isotype-specific exons accounts for the production of smooth and striated muscle isoforms. J Biol Chem 262: 4755-4765.

    Google Scholar 

  • Saeki K, Sutoh K and Wakabayashi T (1996) Tropomyosin-binding site(s) on the Dictyostelium actin surface as indicated by site-directed mutagenesis. Biochemistry 35: 14465-14472.

    Google Scholar 

  • Saeki K, Yasunaga T, Matsuura Y and Wakabayashi T (2000) Role of residues 230 and 260 of actin in myosin ATPase activation by actin-tropomyosin. Biochem Biophys Res Commun 275: 428-433.

    Google Scholar 

  • Salviati G, Betto R and DanieliBetto D (1982) Polymorphism of myofibrillar proteins of rabbit skeletal muscle fibres. Biochem J 207: 261-272.

    Google Scholar 

  • Sakamaki S, Hayashi S, Takayanagi N and Niitsu Y (1996) Autoantibodies in sera of patients with ulcerative colitis recognize tropomyosin peptide associated with HLA-DPW9. Gastroenterology 110: A1007.

    Google Scholar 

  • Sakamaki S, Takayanagi N, Yoshizaki N, Hayashi S, Takayama T, Kato J, Kogawa K, Yamauchi N, Takkemoto N, Nobuoka A, Ayabe T, Kogo Y and Niitsu Y (2000) Autoantibodies against the specific epitope of human tropomyosin(s) detected by a peptide based immunoassay in sera of patients with ulcerative colitis show antibody dependent cell mediated cytotoxicity against HLA-DPw9 transfected L cells. Gut 47: 236-241.

    Google Scholar 

  • Sanders C and Smillie LB (1985) Amino acid sequence of chicken β tropomyosin. J Biol Chem 260: 7264-7275.

    Google Scholar 

  • Sanger JW, Sanger JM and Jockusch BM (1983) Differences in stress fibres between fibroblasts and epithelial cells. J Cell Biol 96: 961-969.

    Google Scholar 

  • Sano K-I, Maeda K, Oda T and Maeda Y (2000a) The effect of single residue substitutions of serine 283 on the strength of head to tail interaction and actin binding properties of rabbit skeletal muscle α-tropomyosin. J Biochem 127: 1095-1102.

    Google Scholar 

  • Sano K-I, Maeda K, Taniguchi H and Maeda Y (2000b) Amino acid replacements in an internal region of tropomyosin alter the properties of the entire molecule. Eur J Biochem 267: 4870-4877.

    Google Scholar 

  • Schachat FH, Diamond MS and Brandt PW (1987) Effect of different troponin T-tropomyosin combinations on thin filament activation. J Mol Biol 198: 551-554.

    Google Scholar 

  • Schaub MC and Perry SV (1971) Regulatory proteins of the myofibril. Characterisation and properties of the inhibitory factor (Troponin B). Biochem J 123: 367-377.

    Google Scholar 

  • Schaub MC, Perry SV and Hartshorne DJ (1967) The effect of tropomyosin on the adenosine triphosphatase activity of desensitized actomyosin. Biochem J 105: 1235-1243.

    Google Scholar 

  • Schaertl S, Lehrer SS and Geeves MA (1995) Separation and characterisation of the two functional regions of troponin involved in thin filament regulation. Biochemistry 34: 15890-15894.

    Google Scholar 

  • Shanti KN, Martin BM, Nagpal S, Medcalfe DD and Subbarao PV (1993) Identification of tropomyosin as the major shrimp allergen and characterisation of the IgE epitopes. J Immunol 151: 5354-5363.

    Google Scholar 

  • Shen BW, Josephs R and Steck TH (1986) Ultrastructure of the intact skeleton of the human erythrocyte membrane. J Cell Biol 102: 9971006.

    Google Scholar 

  • Shigekawa M and Tonomura Y (1973) Interrelation among the three components of troponin and tropomyosin studied by their kinetic effects on the ATPase reaction of actomyosin. J Biochem 73: 1135-1148.

    Google Scholar 

  • Shishido T, Ohkawa M, Itoh A, Enomoto T, Hashimoto Y and Masuko T (2000) Colocalisation of GP125/CD98 with tropomyosin isoforms at the cell-cell adhesion boundary. J Biochem 127: 253-261.

    Google Scholar 

  • Smillie LB (1979) Structure and functions of tropomyosins from muscle and non-muscle sources. Trends in Biochem Sc 4: 151-154.

    Google Scholar 

  • Smillie LB (1996) Tropomyosin. In: Barany M (ed.) Biochemistry of Smooth Muscle Contraction. pp. 63-75, Academic Press, New York.

    Google Scholar 

  • Smith CWJ, Pritchard K and Marston SB (1987) The mechanism of Ca2+ regulation of vascular smooth muscle thin filaments by caldesmon and calmodulin. J Biol Chem 262: 116-122.

    Google Scholar 

  • Sobue K, Muramoto Y, Fujuta M and Kakiuchi S (1981) Purification of a calmodulin-binding protein from chicken gizzard that interacts with actin. Proc Natl Acad Sc USA 78: 5652-5655.

    Google Scholar 

  • Sobue K, Muramoto Y, Inui M, Kanda K and Kakiuchi S (1982) Control of actin-myosin interaction of gizzard smooth muscle by calmodulin-and caldesmon-linked flip-flop mechanism. Biomed Res 3: 188-196.

    Google Scholar 

  • Sodek J, Hodges RS, Smillie LB and Jurasek L (1972) Amino acid sequence of rabbit skeletal tropomyosin and its coiled-coil structure. Proc Nat Acad Sc USA 69: 3800-3804.

    Google Scholar 

  • Spindler MK, Wernicke D, Stromer H, Leupold A, Theil C, Theirfelder L and Neubauer S (1999) α-tropomyosin missense mutation Asp175Asn but not Glu180Gly leads to altered left ventricle performance in a transgenic rat model of familial hypertrophic cardiomyopathy. Circulation 100: I-268.

    Google Scholar 

  • Spudich JA, Huxley HA and Finch JT (1972) Regulation of muscle contraction. II Structural studies of the interaction of the tropomyosin-troponin complex with actin. J Mol Biol 72: 619-632.

    Google Scholar 

  • Squire JM and Morris EP (1998) A new look at thin filament regulation in vertebrate skeletal muscle. FASEB J 12: 761-771.

    Google Scholar 

  • Stamm S, Casper D, Lees-Miller JP and Helfman DM (1993) Brain-specific tropomyosins TMBr-1 and TMBr-3 have distinct patterns of expression during development and in adult brain. Proc Natl Acad Sc USA 90: 9857-9861.

    Google Scholar 

  • Steinbach JH, Schubert D and Eldridge L (1980) Changes in cat muscle contractile proteins after prolonged inactivity. Expl Neur 67: 655-669.

    Google Scholar 

  • Stewart M (1975) Tropomyosin: evidence for no stagger between the chains. FEBS Letts 53: 5-7.

    Google Scholar 

  • Stewart M and McLachlan AD (1975) Fourteen actin-binding sites on tropomyosin. Nature 257: 331-333.

    Google Scholar 

  • Stone D, Sodek J, Johnson P and Smillie LB (1974) Tropomyosin: correlation of amino acid sequence and structure. Proc Ninth FEBS mtg (Budapest), 31: 125-136.

    Google Scholar 

  • Strand J, Butters CA, Nili M, Homsher E and Tobacman LS (2000) The effect of tropomyosin sequence on myosin binding to actin. Evidence for a myosin target zone. Biophys J 78: 364A.

    Google Scholar 

  • Straub FB (1942) Actin Stud Inst Med Chem Univ Szeged 2: 3-15.

    Google Scholar 

  • Stull JT and Buss JE (1977) Phosphorylation of cardiac troponin by cyclic adenosine 3′-5′-monophosphate-dependent protein kinase. J Biol Chem 252: 851-857.

    Google Scholar 

  • Sung LA and Lin JJ-C (1994) Erythrocyte tropomodulin binds to the N-terminal of hTM5, a tropomyosin isoform encoded by the γ-tropomyosin gene. Biochem Biophys Res Commun 201: 627-634.

    Google Scholar 

  • Sung L.A, Gao K-M, Yee LJ, Temm-Grove CJ, Helfman DM, Lim JJ-C and Mehrpouryan M (2000) Tropomyosin isoform 5b is expressed in human erythrocytes: implications of tropomodulin-TM5 or tropomodulin-TM5b complexes in the protofilament hexagonal organization of membrane skeleton. Red Cells 95: 1473-1480.

    Google Scholar 

  • Sussman MA, Ito M, Daniels MP, Flucher B, Buranen S and Kedes L (1996) Chicken skeletal tropomodulin: novel localisation and characterisation. Cell Tissue Res 285: 287-296.

    Google Scholar 

  • Sussman MA, Baque S, Uhm CS, Daniels MP, Price RL, Simpson D, Terracio I and Kedes L (1998) Altered expression of tropomodulin in cardiomyocytes disrupts the sarcomeric structure of myofibrils. Circulation Res 82: 94-105.

    Google Scholar 

  • Sussman MA, Welch S, Gude N, Khoury PR, Daniels SR, Kirkpatrick D, Walsh RA, Price RL, Lim HW and Molkentin JD (1999). Pathogenesis of dilated cardiomyopathy. Molecular, structural and population analysis in tropomodulin-overexpressing transgenic mice. Amer J Path 155: 2101-2113.

    Google Scholar 

  • Syska H, Wilkinson JM and Perry SV (1976) The relationship between biological activity and primary structure of troponin I from white skeletal muscle of the rabbit. Biochem J 153: 375-386.

    Google Scholar 

  • Szilagyi L and Lu RC (1982) Changes of lysine reactivities of actin in complex with myosin subfragment 1, tropomyosin and troponin. Biochim Biophys Acta 709: 204-211.

    Google Scholar 

  • Takahashi K, Hiwada K and Kokubu T (1986) Isolation and characterisation of a 34000 dalton calmodulin and F-actin binding protein from chicken gizzard smooth muscle. Biochem Biophys Res Commun 141: 20-26.

    Google Scholar 

  • Takebayashi T, Morita Y and Oosawa F (1977) Electron microscopic investigation of the flexibility of F-actin. Biochim Biophys Acta 492: 357-362.

    Google Scholar 

  • Takenaga K, Nakamura Y, Kageyama h and Sakiyama S (1990) Nucleotide sequence of cDNA for non-muscle tropomyosin 5 of mouse fibroblast. Biochim Biophys Acta 1087: 101-103.

    Google Scholar 

  • Takenaga K, Nakamura Y, Sakiyama S, Hasegawa Y, Sato K and Endo H (1994) Binding of pEL98 protein, an S100-related calcium-binding protein, to non-muscle tropomyosin. J Cell Biol 124: 757-768.

    Google Scholar 

  • Talbot JA and Hodges RS (1981) Synthetic studies on the inhibitory region of rabbit skeletal troponin I. J Biol Chem 256: 2798-2802.

    Google Scholar 

  • Talbot K and McLeod AR (1983) A novel form of tropomyosin in human fibroblasts. J Mol Biol 164: 159-174.

    Google Scholar 

  • Tanaka H (1972) The helix content of tropomyosin and the interaction between tropomyosin and F-actin under various conditions. Biochim Biophys Acta 278: 556-566.

    Google Scholar 

  • Tanaka H and Oosawa F (1971) The effect of temperature on the interaction between F-actin and tropomyosin. Biochim Biophys Acta 253: 274-283.

    Google Scholar 

  • Tawada Y, Ohara H, Ooi G and Tawada K (1975) Non polymerisable tropomyosin and the control of superprecipitation of actomyosin. J Biochem 78: 65-72.

    Google Scholar 

  • Taylor K and Amos LA (1981) A new model for the geometry of binding of myosin crossbridges to muscle thin filaments. J Mol Biol 147: 294-324.

    Google Scholar 

  • Temm-Grove CJ, Guo W and Helfman DM (1996) Low molecular weight rat fibroblast tropomyosin (TM-5): cDNA cloning, actin binding, localization and coiled-coil interactions. Cell Motil Cytoskeleton 33: 223-240.

    Google Scholar 

  • Temm-Grove CJ, Jockusch BM, Weinberger RP, Schevzov G and Helfman DM (1998) Distinct localisations of tropomyosin isoforms in LLC-PK1 epithelial cells suggests specialised functions at cell-cell adhesions. Cell Motil Cytoskel 40: 393-407.

    Google Scholar 

  • Tetzlaff MT, Jackle H and Pankratz MJ (1996) Lack of Drosophila cytoskeletal tropomyosin affects head morphogenesis and the accumulation of oskar mRNA required for germ cell formation. EMBO J 15: 1247-1254.

    Google Scholar 

  • Thierfelder L, Watkins H, MacRae C, Lamas R McKenna W, Vosberg HP, Seidman JG and Seidman CE (1994) α-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 77: 701-712.

    Google Scholar 

  • Tobacman LS, Back N, Butters C, Karibe A, Strand J, Fananapizir L and Homsher E (1999) A novel alpha-tropomyosin associated with a malignant form of hypertrophic cardiomyopathy causes increased thin filament calcium affinity and altered myosin cycling. Circulation 100: I-276.

    Google Scholar 

  • Towbin JA (1998) The role of cytoskeletal proteins in cardiomyopathies. Curr Opin Cell Biol 10: 131-139.

    Google Scholar 

  • Trombitas K, Baatsen PHWW, Lin J J-C, Lemanski LF and Pollack GH (1990) Immunoelectron microscopic observation on tropomyosin location in striated muscle. J Muscle Res Cell Motil 11: 445-452.

    Google Scholar 

  • Tsao T-C, Bailey K and Adair GS (1951) The size and aggregation of tropomyosin particles. Biochem J 49: 27-30.

    Google Scholar 

  • Urbancikova M and Hitchcock-Degregori SE (1994) Requirement of amino-terminal modification for striated muscle α-tropomyosin function J Biol Chem 269: 24310-24315.

    Google Scholar 

  • Vanburen P, Palmiter KA and Warshaw DM (1999) Tropomyosin directly modulates actomyosin mechanical performance at the level of a single actin filament. Proc Natl Acad Sc USA 96: 12488-12493.

    Google Scholar 

  • Vera C, Lao J, Lin JJ-C and Sung LA (2000a) Erythrocyte tropomyosin binding site on human tropomodulin. FASEB J 14: A100.

    Google Scholar 

  • Vera C, Sood A, Gao K-M, Yee LJ, Lin, JJ-C and Sung LA (2000b) Tropomodulin binding site mapped to residues 7–14 at the N-terminal heptad repeats of tropomyosin isoform 5. Arch Biochem Biophys 378: 16-24.

    Google Scholar 

  • Vibert PJ, Haselgrove JC, Lowy J and Poulsen FR (1972) Structural changes in actin-containing filaments of muscle. J Mol Biol 71: 757-767.

    Google Scholar 

  • Vibert P, Craig R and Lehman WJ (1993) Three dimensional reconstruction of caldesmon-containing smooth muscle thin filaments. Cell Biol 123: 313-321.

    Google Scholar 

  • Vibert P, Craig R and Lehman W (1997) Steric-model for activation of muscle thin filaments. J Mol Biol 266: 8-14.

    Google Scholar 

  • Walsh TP, Trueblood CE, Evans R and Weber A (1984) Removal of tropomyosin overlap and the cooperative response to increasing calcium concentrations of the acto-subfragment-1 ATPase. J Mol Biol 182: 265-269.

    Google Scholar 

  • Watson MH, Kuhn AE, Novy RE, Lin JJ-C and Mak AS (1990) Caldesmon-binding sites on tropomyosin. J Biol Chem 265: 18860-18866.

    Google Scholar 

  • Weber K and Osborne M (1969) The reliability of molecular weight determination by dodecyl sulphate polyacrylamide gel electrophoresis. J Biol Chem 244: 4406-4412.

    Google Scholar 

  • Weber A, Pennise CR, Babcock GG and Fowler VM (1994) Tropomodulin caps the pointed ends of actin filaments. J Cell Biol 127: 1627-1635.

    Google Scholar 

  • Wegner A (1982) Kinetic analysis of actin assembly suggests that tropomyosin inhibits spontaneous fragmentation of actin filaments. J Mol Biol 161: 217-227.

    Google Scholar 

  • Wegner A and Ruhnau K (1988) Rate of binding of tropomyosin to actin filaments. Biochemistry 27: 6994-2000.

    Google Scholar 

  • Wegner A and Walsh TP (1981) Interaction of tropomyosin-troponin with actin filaments. Biochemistry 20: 5633-5642.

    Google Scholar 

  • Wehland J and Weber K (1980) Distribution of fluorescently labelled actin and tropomyosin after injection in living tissue culture cells as observed with TV image intensification. Exp Cell Res 127: 397-408.

    Google Scholar 

  • Weigt C, Schoepper B and Wegner A (1990) Tropomyosin-troponin complex stabilises the pointed ends of actin filaments against polymerisation and depolymerisation. FEBS Lett 260: 266-268.

    Google Scholar 

  • Weinberger P, Henke RC, Tolhurst O, Jeffery PL and Gunning P (1993) Induction of neuron-specific tropomyosin mRNAs by nerve growth factor is dependent on morphological differentiation. J Cell Biol 120: 2205-215.

    Google Scholar 

  • Wernicke D, Thiel C, Plehm R, Hammes A, Ganten U, Morano I, Davies MJ and Thierfelder L (1999) Characterisation of a transgenic rat model of familial hypertrophic cardiomyopathy with missense mutations Asp175Asn or Glu180Gly in α-tropomyosin. Circulation 100: I-268.

    Google Scholar 

  • Willadsen KA, Butters CA, Hill LE and Tobacman LS (1992) Effects of the amino terminal regions of tropomyosin and troponin T on thin filament assembly. J Biol Chem 267: 23746-23752.

    Google Scholar 

  • Williams DL and Greene LE (1983) Comparison of the effects of tropomyosin and troponin-tropomyosin on the binding of myosin subfragment 1 to actin. Biochemistry 22: 2770-2774.

    Google Scholar 

  • Williams DL Jr, Greene LE and Eisenberg E (1985) Comparison of effects of smooth and skeletal tropomyosins on interactions of actin and myosin subfragment 1. Biochemistry 23: 4150-4155.

    Google Scholar 

  • Whitby FG and Phillips JN Jr (2000) Crystal structure of tropomyosin at 7 Å resolution. Proteins 38: 49-59.

    Google Scholar 

  • Whitby FG, Kent H, Stewart F, Stewart M, Xie X, Hatch V, Cohen C and Phillips GN Jr (1992) Structure of tropomyosin at 9 Angstroms resolution. J Mol Biol 227: 241-252.

    Google Scholar 

  • White SP, Cohen C and Phillips GN Jr (1987) Structure of co-crystals of tropomyosin and troponin. Nature 325: 826-828.

    Google Scholar 

  • Witteman AM, Akkerdaas JH, Van Leeuwen J, Van Der Zee JS and Aalberse RC (1994) Identification of a cross-reactive allergen (presumably tropomyosin) in shrimp mites and insects. Int Arch Allergy Immunol 105: 56-61.

    Google Scholar 

  • Wong WW, Bobkova BA, Gerson JH, DasGupta G and Reisler E (1998) Yeast actin mutants in the regulation of actomyosin interactions in the in vitro motility assays. Biophys J 74: A264.

    Google Scholar 

  • Woods EF (1966) Dissociation of tropomyosin by urea. J Mol Biol 16: 581-584.

    Google Scholar 

  • Woods EF (1967) Molecular weight and subunit structure of tropomyosin B. J Biol Chem 242: 2859-2871.

    Google Scholar 

  • Yagi N and Matsubara I (1989) Structural changes in the thin filament during activation studied by X-ray diffraction of highly stretched muscle. J Mol Biol 208: 359-363.

    Google Scholar 

  • Yamashiro-Matsumura S and Matsumura F (1988) Characterisation of a 83-kilodalton non-muscle caldesmon from cultured rat cells: stimulation of actin binding of non-muscle tropomyosin and periodic localization along microfilaments like tropomyosin. J Cell Biol 106: 1973-1983.

    Google Scholar 

  • Yang Y, Gordon DJ, Korn D and Eisenberg E (1977) Interaction between acanthamoeba actin and rabbit tropomyosin. J Biol Chem 252: 3374-3378.

    Google Scholar 

  • Yang Y, Korn ED and Eisenberg E (1979) Cooperative binding of tropomyosin to muscle and acanthamoeba actin. J Biol Chem 254: 7137-7140.

    Google Scholar 

  • Xu C, Craig R, Tobacman L, Horowitz R and Lehman W (1999) Tropomyosin positions in regulated thin filaments revealed by cryoelectronmicroscopy. Biophys J 77: 985-992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perry, S. Vertebrate tropomyosin: distribution, properties and function. J Muscle Res Cell Motil 22, 5–49 (2001). https://doi.org/10.1023/A:1010303732441

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010303732441

Keywords

Navigation