Skip to main content
Log in

The glutathione peroxidase homologous gene from Chlamydomonas reinhardtii is transcriptionally up-regulated by singlet oxygen

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The glutathione peroxidase homologous gene (Gpxh gene) in Chlamydomonas reinhardtii is up-regulated under oxidative stress conditions. The Gpxh gene showed a remarkably strong and fast induction by the singlet oxygen-generating photosensitizers neutral red, methylene blue and rose Bengal. The Gpxh mRNA levels strongly increased, albeit much more slowly, upon exposure to the organic hydroperoxides tert-butyl hydroperoxide (t-BOOH) and cumene hydroperoxide. In contrast, the Gpxh mRNA levels were only weakly induced by exposure to the superoxide-generating compound paraquat and by hydrogen peroxide. A comparison of the Gpxh mRNA levels with those of the heat shock protein HSP70A and the iron superoxide dismutase gene showed qualitative and quantitative differences for the three genes under oxidative stress conditions tested. The Gpxh gene is specifically induced by singlet-oxygen photosensitizers and the relative induction by other compounds is much weaker for Gpxh than for the other genes investigated. Using Gpxh promoter fusions with the arylsulfatase reporter gene, we have shown that the Gpxh was transcriptionally up-regulated by singlet-oxygen photosensitizers. It is also shown that the Gpxh promoter contains a region between 104 and 179 bp upstream of the transcription start that is responsible for the mRNA up-regulation upon exposure to 1O2 but not t-BOOH. Within this region a regulatory sequence homologous to the mammalian cAMP response element (CRE) and activator protein 1 (AP-1) binding site was identified within a 16 bp palindrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auchincloss, A.H., Loroch, A.I. and Rochaix, J.D. 1999. The argininosuccinate lyase gene of Chlamydomonas reinhardtii: cloning of the cDNA and its characterization as a selectable shuttle marker. Mol. Gen. Genet. 261: 21–30.

    Google Scholar 

  • Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidmann, J.G., Smith, J.A. and Struhl, K. 1994. Current Protocols in Molecular Biology. John Wiley, New York.

    Google Scholar 

  • Aveline, B.M., Sattler, R.M. and Redmond R.W. 1998. Environmental effects on cellular photosensitization: correlation of phototoxicity mechanism with transient absorption spectroscopy measurements. Photochem. Photobiol. 68: 51–62.

    Google Scholar 

  • Beeor-Tzahar, T., Benhayyim, G., Holland, D., Faltin, Z. and Eshdat, Y. 1995. A stress associated citrus protein is a distinct plant phospholipid hydroperoxide glutathione peroxidase. FEBS Lett. 366: 151–155.

    Google Scholar 

  • Bensasson, R.V., Land, E.J. and Truscott, T.G. 1993. Excited states and free radicals in biology and medicine. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Bienz, M. and Pelham, N.R.B. 1986. Heat-shock regulatory elements function as an inducible enhancer in the Xenopus hsp70 gene and when linked to a heterologous promoter. Cell 45: 753–760.

    Google Scholar 

  • Blankenship, J.E. and Kindle, K.L. 1992. Expression of chimeric genes by the light-regulated cabII-1 promoter in Chlamy-domonas reinhardtii.AcabII-1/nit1 gene functions as a dominant selectable marker in a nit1-nit2 -strain. Mol. Cell. Biol. 12: 5268–5279.

    Google Scholar 

  • Bowler, C., Yamagata, H., Neuhaus, G. and Chua, N.-H. 1994. Phytochrome signal transduction pathways are regulated by reciprocal control mechanisms. Genes Dev. 8: 2188–2202.

    Google Scholar 

  • Boyer, H.W. and Roulland-Dussoix, D. 1969. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J. Mol. Biol. 41: 459–472.

    Google Scholar 

  • Bray, D.F., Bagu, J.R. and Nakamura, K. 1993. Ultrastructure of Chlamydomonas reinhardtii following exposure to paraquat: comparison of wild type and paraquat-resistant mutant. Can. J. Bot. 71: 174–182.

    Google Scholar 

  • Briviba, K., Klotz, L.-O. and Sies, H. 1997. Toxic and signalling effects of photochemically or chemically generated singlet oxygen in biological systems. Biol. Chem. 378: 1259–1265.

    Google Scholar 

  • Brown E.G. and Newton, R.P. 1992. Phytochem. Anal. 3: 1–13 (1992).

    Google Scholar 

  • Cadenas, E. and Sies, H. 1998. The lag phase. Free Radical Res. 28: 601–609.

    Google Scholar 

  • Cerutti, H., Johnson, A.M., Gillham, N.W. and Boynton, J.E. 1997. A eubacterial gene conferring spectinomycin resistance on Chlamydomonas reinhardtii: integration into the nuclear genome and gene expression. Genetics 145: 97–110.

    Google Scholar 

  • Chen, H., Romoleroux, P.A. and Salin, M.L. 1996. The iron containing superoxide dismutase encoding gene from Chlamydomonas reinhardtii obtained by direct and inverse PCR. Gene 168: 113–116.

    Google Scholar 

  • Chomczynski, P. and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156–159.

    Google Scholar 

  • Clark, G. 1981. Staining Procedures. Williams and Wilkins, Baltimore, MD.

    Google Scholar 

  • Criqui, M.C., Jamet, E., Parmentier, Y., Marbach, J., Durr, A. and Fleck, J. 1992. Isolation and characterization of a plant cDNA showing homology to animal glutathione peroxidases. Plant Mol. Biol. 18: 623–627.

    Google Scholar 

  • Davies, J.P., Weeks, D.P. and Grossman, A.R. 1992. Expression of the arylsulfatase gene from the b 2-tubulin promoter in Chlamydomonas reinhardtii. Nucl. Acids Res. 29: 1959–2965.

    Google Scholar 

  • Debuchy, R., Purton, S. and Rochaix, J.D. 1989. The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J. 8: 2803–2809.

    Google Scholar 

  • de Hostos, E.L., Togasaki, R.K. and Grossman, A. 1988. Purification and biosynthesis of a derepressible periplasmic arylsulfatase from Chlamydomonas reinhardtii. J. Cell Biol. 106: 29–37.

    Google Scholar 

  • de Hostos, E.L., Schilling, J. and Grossman, A.R. 1989. Structure and expression of the gene encoding the periplasmic arylsul-fatase of Chlamydomonas reinhardtii. Mol. Gen. Genet. 218: 229–239.

    Google Scholar 

  • Depege, N., Drevet, J. and Boyer, N. 1998. Molecular cloning and characterization of tomato cDNAs encoding glutathione peroxidase-like proteins. Eur. J. Biochem. 253: 445–451.

    Google Scholar 

  • Devine, M., Duke, S.O. and Fedtke, C. 1993. Physiology of Herbicide Action. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Di Mascio, P., Briviba, K., Sasaki, S.T., Catalani, L.H., Medeiros, M.H.G. Bechara, E.J.H. and Sies, H. 1997. The reaction of peroxynitrite with tert-butyl hydroperoxide produces singlet molecular oxygen. Biol. Chem. 378: 1071–1074.

    Google Scholar 

  • Duran, N. 1982. Singlet oxygen in biological processes. In: A. Walderman and G. Cilento (eds.) Chemical and Biological Generation of Excited States, Academic Press, New York, pp. 345–369.

    Google Scholar 

  • Ehrenberg, B., Anderson, J.L. and Foote, C.S. 1998. Kinetics and yield of singlet oxygen photosensitized by hypericin in organic and biological media. Photochem. Photobiol. 68: 135–140.

    Google Scholar 

  • Elstner, E.F. 1991. Mechanisms of oxygen activation in different compartments of plant cells. In: E. Pell and K. Steffen (eds.) Active Oxygen/Oxidative Stress and Plant Metabolism, American Society of Plant Physiologists, pp. 000–000.

  • Eshdat, Y., Holland, D., Faltin, Z. and Benhayyim, G. 1997. Plant glutathione peroxidases. Physiol. Plant. 100: 234–240.

    Google Scholar 

  • Ettl, H. 1976. Die Gattung Chlamydomonas Ehrenberg. Cramer, Vaduz.

    Google Scholar 

  • Evans, M.C.W. and Nugent, J.H.A. 1993. Structure and function of the reaction center cofactors in oxygenic organisms. In: J. Deisenhofer and J.H. Norris (eds.) The Photosynthetic Reaction Center, Academic Press, San Diego, CA, pp. 391–415.

    Google Scholar 

  • Foote, C.S. 1991. Definition of type I and type II photosensitized oxidation. Photochem. Photobiol. 54: 659.

    Google Scholar 

  • Foyer, C.H., Lopez-Delgado, H., Dat, J.F. and Scott, I.M. 1997. Hydrogen peroxide and glutathione associated mechanisms of acclimatory stress tolerance and signalling. Physiol. Plant. 100: 241–254.

    Google Scholar 

  • Girotti, A.W. 1998. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J. Lipid Res. 39: 1529–1542.

    Google Scholar 

  • Goldschmidt-Clermont, M. and Rahire, M. 1986. Sequence, evolution and differential expression of the two genes encoding variant small subunits of ribulose bisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtii. J. Mol. Biol. 191: 421–432.

    Google Scholar 

  • Gueta-Dahan, Y., Yaniv, Z., Zilinskas, B.A. and Ben-Hayyim, G. 1997. Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in Citrus. Planta 203: 460–469.

    Google Scholar 

  • Halliwell, B. 1984. Chloroplast Metabolism. Clarendon Press, Oxford, UK.

    Google Scholar 

  • Halliwell, B. and Gutteridge, J.M.C. 1989. Free Radicals in Biology and Medicine. Clarendon Press, Oxford, UK.

    Google Scholar 

  • Harris, E.H. 1989. The Chlamydomonas Source Book. A Compre-hensive Guide to Biology and Laboratory Use. Academic Press, San Diego, CA.

    Google Scholar 

  • Hideg, E., Spetea, C. and Vass, I. 1994a. Singlet oxygen and free radical production during acceptor-and donor-side-induced photoinhibition. Studies with spin trapping EPR spectroscopy. Biochim. Biophys. Acta 1186: 143–151.

    Google Scholar 

  • Hideg, E., Spetea, C. and Vass, I. 1994b. Singlet oxygen production in thylakoid membranes during photoinhibition as detected by EPR spectroscopy. Photosyn. Res. 39: 191–199.

    Google Scholar 

  • Hideg, E., Kalai, T., Hideg, K. and Vass, I. 1998. Photoinhibition of photosynthesis in vivo results in singlet oxygen production. Detection via nitroxide-induced fluorescence quenching in broad bean leaves. Biochemistry 37: 11405–11411.

    Google Scholar 

  • Holland, D., Ben-Hayyim, G., Faltin, Z., Camoin, L., Strosberg, A.D. and Eshdat, Y. 1993. Molecular characterization of salt-stress-associated protein in citrus: protein and cDNA sequence homology to mammalian glutathione peroxidases. Plant Mol. Biol. 21: 923–927.

    Google Scholar 

  • Imbault, P., Wittemer, C., Johanningmeier, U., Jacobs, J.D. and Howell, S.H. 1988. Structure of the Chlamydomonas reinhardtii cabII-1 gene encoding a chlorophy ll-a/b-binding protein. Gene 73: 397–407.

    Google Scholar 

  • Immenschuh, S., Hink, V., Ohlmann, A., Gifhorn-Katz, S., Katz, N., Jungermann, K. and Kietzmann, T. 1998. Transcriptional activation of the haem oxygenase-1 gene by cGMP via a cAMP.407 response element/activator protein-1 element in primary cultures of rat hepatocytes. Biochem. J. 334: 141–146.

    Google Scholar 

  • Jasper, F., Quednau, B., Kortenjann, M. and Johanningmeier, U. 1991. Control of cab gene expression in synchronized Chlamy-domonas reinhardtii cells. J. Photochem. Photobiol. B: Biol. 11: 139–150.

    Google Scholar 

  • Kalai, T., Hideg, E., Vass, I. and Hideg, K. 1998. Double (fluores-cent and spin) sensors for detection of reactive oxygen species in the thylakoid. Free Radical Biol. Med. 24: 649–652.

    Google Scholar 

  • Khan, A.U. and Khasa, M. 1994. Singlet molecular oxygen in the Haber-Weiss reaction. Proc. Natl. Acad. Sci. USA 91: 12365–12367.

    Google Scholar 

  • Kindle, K.L. 1990. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 87: 1228–1232.

    Google Scholar 

  • Kindle, K.L. 1998. Nuclear transformation: technology and applica-tions. In: J.-D. Rochaix, G.-C. Michel and M. Sabeeha (eds.) The Molecular Biology of Chloroplasts and Mitochondria in Chlamy-domonas, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 41–61.

    Google Scholar 

  • Kochevar, I.E., Bouvier, J., Lynch, M. and Lin, C.-W. 1994. In-fluence of dye and protein location on photosensitization of the plasma membrane. Biochim. Biophys. Acta. 1196: 172–180.

    Google Scholar 

  • Kropat, J., von Gromoff, E.D., Muller, F.W. and Beck, C.F. 1995. Heat shock and light activation of a Chlamydomonas HSP70 gene are mediated by independent regulatory pathways. Mol. Gen. Genet. 248: 727–734.

    Google Scholar 

  • Lambert, C.R. and Kochevar, I.E. 1997. Electron transfer quenching of the rose bengal triplet state. Photochem. Photobiol. 66: 15–25.

    Google Scholar 

  • Leisinger, U., Rüfenacht, K., Zehnder, A.J.B. and Eggen, R.I.L. 1999. Structure of a glutathione peroxidase homologous gene involved in the oxidative stress response in Chlamydomonas reinhardtii. Plant Sci. 149: 139–149.

    Google Scholar 

  • Macpherson, A.N., Telfer, A., Barber, J. and Truscott, T.G. 1993. Direct detection of singlet oxygen from isolated photosystem reaction centres. Biochim. Biophys. Acta 1143: 301–309.

    Google Scholar 

  • Mayfield, S.P. 1991. Over-expression of the oxygen-evolving en-hancer 1 protein and its consequences on photosystem II accu-mulation. Planta 185: 105–110.

    Google Scholar 

  • Mendez-Alvarez, S., Leisinger, U. and Eggen, R.I.L. 1999. Adap-tive responses in Chlamydomonas reinhardtii. Int. Microbiol. 2: 15–22.

    Google Scholar 

  • Müller, F.W., Igloi, G.L. and Beck, C.F. 1992. Structure of a gene encoding heat-shock protein HSP70 from the unicellular alga Chlamydomonas reinhardtii. Gene 111: 165–173.

    Google Scholar 

  • Neverov, K.V., Mironov, E.-A., Lyudnikova, T.A., Krasnovsky, A.A. and Kritsky, M.S. 1996. Phosphorescence analysis of the triplet state of pterins in connection with their photoreceptor function in biochemical systems. Biochemistry Moscow 61: 1149–1155.

    Google Scholar 

  • Ohresser, M., Matagne, R.F. and Lopez, R.L. 1997. Expres-sion of the arylsulfatase reporter gene under the control of the Nit1 promoter in Chlamydomonas reinhardtii. Curr. Genet. 31: 264–271.

    Google Scholar 

  • Penson, S.P., Schuurink, R.C., Fath, A., Gubler, F., Ja-cobsen, J.V. and Jones, R.L. 1996. Plant Cell 8: 2325–2333.

    Google Scholar 

  • Quinn, J.M. and Merchant, S. 1995. Two copper-responsive ele-ments associated with the Chlamydomonas Cyc6 gene function as targets for transcriptional activators. Plant Cell 7: 623–638.

    Google Scholar 

  • Rochaix, J.D. 1995. Chlamydomonas reinhardtii as the photosyn-thetic yeast. Annu. Rev. Genet. 29: 209–230.

    Google Scholar 

  • Rochaix, J.-D., Michel, G.-C. and Sabeeha, M. 1998. The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas. Kluwer Academic Publishers, Dordrecht, Netherlands.

    Google Scholar 

  • Roeckel-Drevet, P., Gagne, G., de Labrouhe, D., Dufaure, J., Nico-las, P. and Drevet, J. 1998. Molecular characterization, organ distribution and stress-mediated induction of two glutathione peroxidase-encoding mRNAs in sunflower (Helianthus annuus). Physiol. Plant. 103: 385–394.

    Google Scholar 

  • Roudyk, S.N., Moxhet, A., Matagne, R.F. and Aghion, J. 1996. Evidence of singlet oxygen evolution by whole living cells of Chlamydomonas reinhardtii. Photosyn. Res. 47: 99–102.

    Google Scholar 

  • Ryter, S.W. and Tyrrell, R.M. 1998. Singlet molecular oxygen ( 1 O 2 ): a possible effector of eukaryotic gene expression. Free Radicals Biol. Med. 24: 1520–1534.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Siedow, J.N. 1991. Plant lipoxygenase: structure and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 245–288.

    Google Scholar 

  • Sies, H. and Menck, C.F.M. 1992. Singlet oxygen induced DNA damage. Mutat. Res. 275: 367–375.

    Google Scholar 

  • Stolbova, A.V. 1871. Genetic analysis of pigment mutations of Chlamydomonas reinhardtii. II. Analysis of the inheritance of mutations of chlorophyll deficiency and light sensitivity in cros ses with the wild-type. Genetika 7: 90–94.

    Google Scholar 

  • Stratton, S.P. and Liebler, D.C. 1997. Determination of singlet oxygen-specific versus radical-mediated lipid peroxidation in photosensitized oxidation of lipid bilayers: effect of β-carotene and α-tocopherol. Biochemistry 36: 12911–12920.

    Google Scholar 

  • Sugimoto, M., Furui, S. and Suzuki, Y. 1997. Molecular cloning and characterization of a cDNA encoding putative phospho-lipid hydroperoxide glutathione peroxidase from spinach. Biosci. Biotechnol. Biochem. 61: 1379–1381.

    Google Scholar 

  • Takeda, T., Ishikawa, T. and Shigeoka, S. 1997. Metabolism of hy-drogen peroxide by the scavenging system in Chlamydomonas reinhardtii. Physiol. Plant. 99: 49–55.

    Google Scholar 

  • Tang, L., Gounaris, K., Griffiths, C.M. and Selkirk, M.E. 1995. Het-erologous expression and enzymatic properties of a selenium-independent glutathione peroxidase from the parasitic nematode Brugia pahangi. J. Biol. Chem. 270: 18313–18318.

    Google Scholar 

  • Telfer, A., Bishop, S.M., Phillips, D. and Barber, J. 1994. Isolated phostosynthetic reaction center of photosystem II as a sensitizer for the formation of singlet oxygen. J. Biol. Chem. 269: 13244–13253.

    Google Scholar 

  • Timko, M.P. 1998. Pigment biosynthesis: chlorophylls, heme, and carotenoids. In: J.-D. Rochaix, G.-C. Michel and M. Sabeeha (eds.) The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 377–414.

    Google Scholar 

  • Ursini, F., Maiorino, M., Brigelius-Flohé, R., Aumann, K.D., Roveri, A., Schomburg, D. and Flohé, L. 1995. Diversity of glutathione peroxidases. Meth. Enzymol. 252: 38–53.

    Google Scholar 

  • Van Mieghem, F., Brettel, K., Hillmann, B., Kamlowski, A., Ruther-ford, A.W. and Schlodder, E. 1995. Charge recombination in photosystem II. 1. Yields, recombination pathways and kinetics of the primary pair. Biochemistry 34: 4798–4813.

    Google Scholar 

  • von Gromoff, E.D. and Beck, C.F. 1993. Genes expressed during sexual differentiation of Chlamydomonas reinhardtii.Mol.Gen. Genet. 241: 415–421.

    Google Scholar 

  • von Gromoff, E.D., Treier, U. and Beck, C.F. 1989. Three light-inducible heat shock genes of Chlamydomonas reinhardtii.Mol. Cell. Biol. 9: 3911–3918.408

    Google Scholar 

  • Wang, W.-Y., Wang, W.L., Boynton, J.E. and Gillham, N.E. 1974. Genetic control of chlorophyll biosynthesis in Chlamydomonas. Analysis of mutants at two loci mediating the conversion of protoporphyrin-IX to magnesium-protoporphyrin. J. Cell Biol. 63: 806–823.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leisinger, U., Rüfenacht, K., Fischer, B. et al. The glutathione peroxidase homologous gene from Chlamydomonas reinhardtii is transcriptionally up-regulated by singlet oxygen. Plant Mol Biol 46, 395–408 (2001). https://doi.org/10.1023/A:1010601424452

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010601424452

Navigation